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A. Sequential Decoding/: ShowtConstCaint Length codes becomes important. The Viterbi algorithm has sev-

Convolutional Codes, J. A. belier eral advantages over sequential decoding for small K.
First, the time to decode is fixed; hence buffering of the

1. Introduction received data is unnecessary. Second, decoding progresses
at the received data rate; there is no need for the decoder

Much of the past interest in convolutional codes has to b o. 10 to 20 times faster than the incoming data, t."
been in the use of these codes with sequential coding, as is necessary in sequential decoding to combat buffer
There the problem of finding "good" codes is not pressing, overflow. Third, resynchronization by inserting a known
because arbitrarily small error probabilities can (albeit at sin_rle-cor :taint-length-long sequence into the data
the expense of some e"-sure probability) be had by using stream periodically is unnecessary. The most important
almost an- code of s" tieiently long constraint length. The result is that for systems giving a bit error probability of

complexity of a sequential decoder is not very sensitive about 5 × 10-3, such as prevails in the Mariner Mars 1969 J
to co_straint length, high rate telemetry system, convolutiJnal codes with

short constraint length decoded by the Viterbi algorithm
Recently, Viterbi (Ref. 1) described a decoder for con- yield a gain of about 1 dB over the use of biorthogonal

•. volutional codes which was subsequently shown to be codes. Also, with the Viterbi algorithm there are no
maximum likelihood (Ref. 2). The number of operations erasures. And the bandwidth expansion is not high. Hence,

:, required by the Viterbi algorithm per decoded bit is a the use of short constraint convolutional codes is very
constant for a_:" given constraint length K and increases attractive in future telemetry systems.
exponent!ally with K. This contrasts with brute force
maximum likelihood decoding where the decoder eom-

2. Propertiesof Convolutional Codes
plexity goes up exponentially with block length which is
typically many times K. Figure 1 shows a typical binary (nonsystematie) con-

volut" real coder. The code rate is R,v = 1/v. In Figure 1

,_ The Viterbi algorithm, while not practical for large K, -fl_ = _ bits/code symbol. The code itself is determined
may perhaps be useful in the range K = 4 to 10. Since it by the connections between the shift register stages and
is limited to small K, finding good short constraint length the rood-2 adders. It is usually specified by v connection
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Fig. 1. Binary convolutional coder

vectors, one for each adder, gl, g_,, ' ' " , gv. The jth corn- (K - 1)_ COLUMNS
ponent of g_ is a 1 if stage j of the shift register is con- -

nected to the ith adder, otherwise it is 0. A more compact _--_ ' ---_____method of specifying the code is a Kv component vector f O
which contains the components of the connection vectors _ _ _
interleaved, that is,

fl = g11, fz = g_l, ' • " , fv = gvl G : O "LROWS
0

fv+t = gl"., " ' " , fKv = g,,_ 0

Convolutional codes are special cases of group codes. O
The generator matrix, G, of a convolutional code is shown
in Fig. 2. The first row of the matrix is the vector f fol- _ f _ /
lowed by zeros. Each succeeding row is the previous row - -- //
shifted v places to the right with the vacated elements Fig. 2. Convolutional code generator matrix /
filled with zeros. The number of rows L in the matrix is

the length of the input information stream. It follows that
tllere are (K + L - 1) v columns in G; this is the block Other criteria such as maximizing the minimum code
length of the code. The (K + L - 1) v element code word word distance do not guarantee that error probability is

minimized (this has been shown by simulation). However,
y is related to the L element input sequence x by low error probability seems at least to be well, if not per-

feetly, correlated with large minimum distances; that is,
y = xG (1) a large minimum distance implies that all code word

distances are large.
The code is thus the set of all 2 Llinear combinations of the

rows of G. An upper bound on minimum code-word distance for

systematic codes has been obtained previously (SPS 37-50,
_ The problem of finding the best code, in the probability Vol. III, pp. 248-251), and will be stated here for non-

of error sense, for a given K is difficult ff not impossible, systematic codes. Since a linear convolutional code is a
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group code, the set of distances from the kth code word minimmn distance for a convolutional code of block
to all other code words is independent of k. Thus without length h.
loss of generality assume tile all-zero code word (corre-
sponding to the all-zero information sequence) is the eor- Initially choose all Kv elements of the connection vee-
reet code word. It is a well-known property of group tors, gi, equal to 1. Then as previously stated, d(1)= Kv.
codes that the total number of ones summed over all code Looking at the generator matrix with two rows; however,
words is less than or equal to tile total number of zeros it is clear that d (2) = 2t_, which is the weight of the code
(Ref, 3), with equality when no column of G is all zero. word corresponding to the input sequence 11. Now change
The minimum distance must be less than or equal to the generator elements from 1 to 0 in such a way that each
average distance, and distance is simply the number of zero is surrounded by ones. Each time this is done, d (1)
ones in a code word. There are 2L cod_ words of which will drop by 1, and d (2) will increase by 2.
2L - 1 are nonzero. The average number of ones in the

2_' - 1 nonzero code words is thus Continue this until rain {d (1), d (2)} is maximized. This

minimum will then be the integer part of the right side

2L V(K+ L-1)v-] of Eq. (3)for h=2. IlK _4 this will be sufficient to
2L - 1 L .91 j achieve the upper bound of Eq. (3). For K up to about 6

the bound can be achieved simply b_. trying several per-
Hence d .... the minimum distance, is upper bounded by mutations of the zeros in the connection vectors. For

this quantity. K > 6, h, gets larger, and d (1) for j > 2 mtkst be con-
sidered. The manipulations soon become too unwieldy

2L V(K + L - 1)vl (2) for handd" "v-=--zk 2 computation.

As an example of this procedure consider generating aThis bound is true for input sequences of any length L.
K = 4, rate _A(v = 3) code. Equation (3) yields d,,,_ 10 atIt is also true for nonzero sequences of length h < L.

Therefore, a tighter bound can be obtained by minimiz- ho = 2. Start out with
ing on h

gl=g_=g_=llll

• 2" I(K+ h- 1)v 1
d,, _ mm _ (3)

1, 2' - 1 '2 This yields d (1) = 12 and d (2) = 6. Now make the follow-
ing change

It has been shown that the minimum occurs at a value

of h that varies as log K (SPS 37-50, Vol. III, pp. 248-251). g_ = g_ = 1111, g, = 1011
As a limiting case, for large K, Eq. (3) reduces to

Now d (1) = 11, d (2) = 8. Finally let

Kv

d,,, < ,_- (4) g, = 1111, g_ = 1101, g, = 1011
/

Then we have d (1) = d (2) = 10. A simple check ensures /"
which says that for large K the minimum distance is less that d (i) _ 10, i > 2. This code is the K = 4 code used /
than about half a constraint length of code symbols. For in the computer simulation described in the next two
K < 10, the optimum h, h,,, will be from 2 to 4. When sections.
h = 1, we have the bound d,,,_Kv which can be achieved

with a code with 2 code words (G has one row, namely f) Using the Viterbi algorithm, eonvolutional codes re-
with all elements of f equal to 1. quire 2_-_ likelihood comparisons to decode one bit.

K-bit binary block codes when encoded and decoded

Equation (3) can be considered as a sequence of ,lpper optimally require (l/K) (2_ - 1) comparisons per bit. In
bounds for nonzero input sequences of length h = 1 to L the first analysis it is thus meaningful to compare the per- i
(we may take L = _ since there is no need to segment formance of a K-bit block code with a constraint length K
the data into blocks in the Viterbi algorithm). This sug- convolutional code.
gests the following ad hoc scheme which has been useful

in generating small K codes with a minimum distance For the white gaussian noise channel a biorthogonal

.'_ equal to or near the upper bound. Let d (h) be the actual code is very nearly optimum. As an example, for a 4-bit
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biortbogonal code, the minimum distance (in terms of was made on the oldest bit in the bit stream, by choosing
signal energy-to-noise ratio) is 2E_, N,, where Eb/N,, is the one corresponding to the most likely stream.
the energy per bit to 1_oise ratio. There are 14 signals at

tbe minimnm distance. Three codes with different constraint lengths were
tested for several values of E_/N,,. At least 200,000 bits

The K = 4 convolutional code previously described were decoded for each point. The bit error probabilities
has d,,, = 10. Since there are 3 code symbols per bit, the for the K = 4, 6, and 8 codes are shown in Figs. 3, 4, and 5,
minimum distance in signal energy is (10,/3) E_/N,, = respectively. The code generators used are also shown in
3.33E_/N.. Furthermore there are only 4 code words at the figures. The K = 4, d,,, = 10 code has already been
this distance at any given decoding step. All other code described. For K = 6, Eq. (3) yields an upper bound of 13

' words are at a greater distance, on d,,,. This d,,, is actually achieved with the code shown.
This code was also generated using the ad hoc scheme
and some trial and error. Later, a search p'ogram was

3. The Decoding Algoriihm written to generate all K = 6, v = 3 codes with d,, = 13.

The Viterbi algorithm is well documented (Refs. i Of several tested, the ope shown in Fig. 4 proved the best.
and 2), and the details will not be repeated here. Sufllce
it to say that operating on an infinite stream of input data At K -= 8, the bound yields d,,, _ 17. No dm= 17 code
the algorithm never makes final bit decisions. A step in was found by hand calculation, and a machine search has
the decoding process consists of generating the likeli- not yet been tried. The code used has d,,_-- 16 and is by
hoods for 2Kpossible bit streams and narrowing this down no means necessarily the best K = 8 code. It was, in fact,
to 2h-_ using 2h-_ pairwise comparisons. Each compari- the only one tested.
son is in many ways similar to a "look forward" step in
sequential decoding. The comparisons can be done in Also shown in Figs. 3, 4, and 5 are the corresponding
parallel. In practice the decoder makes bit decisions after K-bit biorthogonal code bit error probabilities (Ref. 5).
a delay of several constraint lengths. The algorithm seems

in the first analysis to be quite amendable to special- 5. Conclusions
purpose machine implementation. The major operations
in a step are "add," "compare," "sbift," and "register The error probability curves of Figs. 3, 4, and 5 clearly
exchange." The principal memory required is 2_-_ shift indicate that constraint length K convolutional codes per-
registers of length about 3 to 5 constraint lengths, form considerably better than K-bit biorthogonal codes.

For instance at K = 6 and PE - 10-3 about 1 dB is to be

saved. There is also the fact that bandwidth and energy
As far as synchronization is concerned, the decoder per code symbol required by convolutional codes is inde-

needs only branch synchronization, i.e., it must know pendent of K while for biorthogonal codes bandwidth goes
which code symbols corresponds to the first adder output as 2_-_/K and energy per symbol as K2 -_-_). Included in
in the coder. Since the decoder retains bit stream outputs Fig. 3 is the bit error probability curve for a K = 7 bier-
corresponding to all coder states, the decoder will with thogonal code. Observe that a K = 4 convolutional code
high probability synchronize within several constraint

d

is
superior to a K = 7 biorthogonal code. ///lengths when started in an arbitrary place in the received

data stream.
References

4. Experimental Resuh_s 1. Viterbi, A. J., "Error Bounds for Convolutional Codes and an
Asymptotically Optimum Dex:odingAlgorithm," IEEE Trans.

The Viterbi decoder was simulated on a SDS 930 corn- Inf. Theory, IT-11, January 1965.
puter. Received data was generated in 1000-bit blocks, 9.. Final Report o:_a Coding System Design for Advanced Solar
and the decoder was started unsyndaronized at the begin- Missions,NASA Contract NAS2-3637.Codex Corp., Watertown,
ning of each of these blocks. The codes used were rate _, Mass., December 1967.
and the channel simulated was a binary input 8-level 3. Peterson, W. W., Error-CorxectingCodes. M.I.T. Pressand John
quantized output white gaussian noise channel. The quan- Wiley &Sons, Inc., New York, 1961.
tization levels were chosen as in Ref. 4. After allowing 4. Jacobs, I. M., "Sequential Decoding for Efficient Communica-tion FromDeep Space," IEEE Trans..Commun. l"ech.,COM-15,
50 hits for resynchronization, the counting of decoding August 1967.
errors was started. Each of the 2K-_ decoder output bit 5. Golomb, S. W,, et al., Digital Communications With Space.
streams was 48 bits long. After a decoding step, a decision Applications. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

174 JPL SPACE PROGRAMS SUMMARY 37-54, VOL. III

1969010076-188



2

_ / _ K=4 BIORTHOGONALCODE
10 .2 "_

--_ ORTHOGONAL CODE

<=
O

OLUTIONAL CO
ua

m 10. 3

g3 = _011 _'_

6

1o-4 I1,6 2,0 2,4 2°8 3,2 3.6 4.0 4,4

Eb/N0, dB

Fig. 3. Bit error probabilities for K = 4 codesand a
comparisonwith a K = 7 biorthogonalcode

JPI, SPACE PROGRAMS SUMMARY 37-54, VOL. III 175

' i
i

1969010076-189



10-2

_,"'--" K = 6 BIORTHOGONAL CODE

4 \

_ 10_3

6

/---K : 6 CONVOLUTIONAL CODE

01 = 100111

4 02 : 101011

Ii3 = llllO1

2

10-4

1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4

Eb/N0, dB ,

Fig. 4. Biterrorprobabilities for/( = 6 codes i

176 JPL SPACE PROGRAMS SUMMARY 37-54, VOL. I1! i

1969010076-190



10-2i

4

..J

10__

6

gl = 10011011

g2 = I0100111

2 _ g3 = |II01lOl
I

10"4
1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4

Eb / N0_ dB
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B. Coding and Synchronization Studies: Dynamics process _ (t) in a phase-locked loop system undergoes /

of Second-Order Phase-Locked Loops, diffusion much like a particle in B,ownian motion (Ref. 1);
/

W. C. tindsey 1 hence, the variance of the phase-error becomes infinite
in the steady state. Previous work (Refs. 2, 3, and 4) on

1. Introduction determining the probability distribution of the phase-
error in the steady state of a first-order loop was aecom-

This article discusses some recent results obtained plished by reducing the phase-error modulo 2rr to a _ (t) 2
relative to the statistical dynamics of the phase-error process. Such a reduction ignores how m_ny cycles have
process in second-order phase-looked loops? Briefly, the slipped' with the passage of time so that diflu_ion of the t
problem can be described as follows: The phase-error phase-error is taking place. For finding telemetry error !
1Consultant,Electrical Engineering Dept., "dniversityof Southern probabilities, that is all that is needed; for estimating
California. tracking accuracy, however, the _ (t) process itself must

be studied. To completely describe the _ (t) process, one=Lindsey,W. C., "NonlinearAnalysisand Synthesisof Generalized
Tracking Systems," Prec. IEEE (in press). Also USC EE317, must account for that component of the variance of the

• Universityof Southern California, Los Angeles,Calif., Dec. 1908. phase-error which causes diffusion, i.e., cycle slipping.
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This is perhaps best deserih,,d by cvah,ating the diffusion where G = _ - sin #,, the overbar denotes statistical
coeflqcient, i.e., the rate with which the variance of the average, f}., represents the amount of loop detuning or
phase-er,'or is approaching infinity, and in some way frequency offset, _ is the signal-to-noise ratio in the loop
combine this component of the variance with the variance bandwidth, and
of the phase-error reduced modulo 9,7r.

r 4- 1

For a second-order loop, this article discusses an ap- wt, _o-_r.. ' , if rr, > >. r_
proximate solution for the steady-state distribution of the

phase-error redl_ced modulo 2_ and establishes the re- The parameter
gions of validity of this solution by comparing it wih.

' experimental results. Also, formulas are presented for r= AKz_/-q = (_/4)',_
(1) the diffusion coefficient of the phase-error process,
(2) the expected values of the time intervals between
phase lumps, (3) the expected number of phase jumps where _ is the "loop damping" and AK represents open
per unit time, (4) the expected number of phase jumps loop gain. Moments of sin 4, (Footnote 9,) are given by
"to the right" and "to the left," (5) the expected value of
the phase-error rate in the steady state, and (6) the mean-
squared value of the phase-error rate in the steady state, siu'--_-/3 sinh rr/31I_ ((,)1 "-'
In the limit, as the s) stem damping a:_proaches infinity,
the results are then w.lid for the first-order loop.

sin'@=_ReLlm(_) j __ _-_] (4)

2. LoopModel and Phase-ErrorDensity

ReducedModulo 27r cos--_= Re [lj_. (_)_q-/_L_-'(_),l%_(,,) J
For a phase-locked loop system with loop filter,

with

F(p)= 1+ ,_p
1+r_p (I) _,,,_= sin-"4,- [si_]2 (5)

ithasbeen recentlyshown (Footnote2)thattheproba- and Re [.] denotestherealpartofthe quantityinthe

bilitydistributionof thephase-errorredllcedmodulo 2rr brackets.Itisclearfrom Eqs.(2)and (4)thatp (4,)will

isgiventoa good approximationby be symmetricwhen theloopisdesignedsuchthatfl= 0.
Itiseasilyshown thatinthe limit,asr approachesin-

exp [/3_b4- a cos(],] finity, Eq. (2) reduces to a result given by V. I. Tikhonov

P ((k) -- 4,rz exp [-lrfl] I/jp (_)l 2 (Refs. 2 and 3) for a first-order loop.

f'+_" //
X exp [-Bx-, cos x] dx (2,) The expected value of the phase-error can be found

J _ from Eq. (2) and the well-known Bessel function expan-
sions of exp (-+-xcos _). Without going into details (Foot-

where Iv (x) is the imaginary Bessel functicn of order v note 2), we have
and argument x and 'k belongs to any interval of width
2,r centered about any lock point 2nrr; n is any integer.

The parameters a and/3, which characterize Eq. (2), are - f_related to the various system parameters through @= _ @P(_) d_

= _ 2 sinh 7rfl '_ mira (a)
F, ,-_/_-.. q'= ,_lb_(")1_/--, m"+ p_ (6)
3 = f_o- AK(I - F,) si_ ,,,=,

× +.q_m__+ (41
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It is clear from Eq. (6) that with fi =: 0, <_= 0. Furthermore, _ is given (Footnote 2) by

,I7 f i 4;"p (,l,) ,l,

2 ? E_ sinh r,fi / I,, (n) _-7:,'-'I. (.) (- 1)"I,,.(a) + 2/7I. (.) I,, (_),-,IZ,,_(,41-'l----fi--L g +4 k_ k_(/7-'+ k-')
l; 1 h 1

2 ) 21 (-1)"(k _ -t m_)I,,, (.)-11-t 947 (- 1)',s,.(.) + _rk(,+)+ 4n-'+ k-' W _---_ Jr (71
l, I II I

III ¢ I_

The varianee crg--=:q,_-- (_): is minilnized when the loop O. Statistical Dynamics of the Pkase-Error Process_,(t)

is designed such that /7= 0 and <_is maximized (Foot- One method of accounting for the fact that the loop
note 9.). For this ease, from Eqs. (6) and (7), we have actually skips cycles is to ewduate the rate at which tile

actual process at work in the loop undergoes diffusion.

2r,'-' 4 (-1) r; This parameter, the so-called diffusion coefficient D

,_. = --_ + _ k---7-., II,(_) (8) (Footnote g and Ref. 1), is (2_)o times the total average
/.-__ number g of phase !umps per unit of time has been shown

(Footnote 2) to be given by
Finally, the expected value of the phase-error rate
and the mean-squared value (Footnote g) are given, 4w;,r'-' eosh 7r/7

respectively, by D - p (r + 1)'-' IIs_ (a) l_ = (2r')__ (10)

= _,,- AK sin 4' In Section 4, we shall see that the variance of tile phase
error _ (t) at time t starting from zer9 error at time t = 0 is

_ = K0,, [,_ (sin _)'-;+/7_ --2_/7 sin,_] (9)
V = .I;-'+ Dt (11)

<,7¢= K_,,,,%,,,+ + 9.Koo(1 - Ko,,.ff')
since the cross term E [47r<h(t)k(t)] is essentially zer "..

where This last fact follows from the fact that E [6(t)] = 0
while _ (t) is essentially independent of k (t). Here, k (t)

K<,o-p (r + 1).2 is the unique integer with
2Wt. r2

_,(t)= 4 (t)+ %k(t) /"
/

The above equation, which relates to _4 to a_,,_, may be Figure 7 illustrates a plot of the normalized diffusion
interpreted as an "uncertainty hyperbola." coefficient for various values of p and' r with/3 = 0. From

this figure, it is seen that diffusion will not appreciably
Figure 6 illustrates a plot of the variance of the phase- effect the measurement in a finite time if p > 8. Via

error crg reduced modulo 2rr for various values of r with Eq. (11), Eqs. (6) and (10) can be used to account for
/3= 0. For purposes of checking the validity of the ap- the effects in which cycle-slipping produces errors in
proximation which lead to Eq. (2), we have plotted vari- Doppler measurements.
ous values of variance of the phase-error obtained by
direct measurement in the laboratory (Ref. 5). From The expected time interval between successive cycle
Fig. 6 it is clear that, for most practical purposes, Eq. (2) slipping events is given (Footnote 2) by
characterizes the distribution p (_) for all p > 0 dB when

r= 2, f_o= 0. The larger the value of r, the better the AT= _-'p(r+ 1)" I/s_(,,)l_"
approximation, r_wL eosh rr/3
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where it can be and has been assmn(,d that the successive process tMt causes diffusion of tlw ph_sc error process
in'4ants in time when phase synchronization is lost arc ,_,(t). Namely,
statistically independent.

I' (rr) =_e (k)- &)' _.xp [St] (18)
In tile case where _,,/-0, th(' case of greatest practical /d

interest, tile average numl)(,r of 1)has(' jumps "to-the- The. mr,an of k is

right," say I, is of interest. Formulas for I_ and I ar(' k: St (19)
given (Footnote 2) by

' I.-exp (_flr.)I (12) and the varianc(' is also given by

2 sinh r.fl _rj{= k_ =--a?,'-= ,_t (20)

where I is the (net) average number of phase jumps per Experimental justification tht, t supports the Poisson as-
unit time; i.e., sumption is given in Ref. 5 and SPS 37-43, Vol. III,

sinh rrfl pp. 76-80. Thus, tile mean-squared value of _,tt) becomesr_,,(r+ 7" (1,'3)
I = I. - I L w,. (,'_)= J II,,, (.)I =

@(t) = a_ (t) -t-(2,-r)_St + 2rr [kq, -- kq,] (21)

Both L and I_ arc zero for the unstressed loop with

f2,,=: 0. The quantity I is related ta the total expected and in the steady state, _ (t) has infinite variance. Now,
number of phase jumps per unit time S through the D = (2r)_S represents the diffusion coefficient of the
equatkm _(t) proce:'s, i.e., the rate at which _ (t) is undergoing

diffusion. Furthermore, if tile random variables k and q,

sinhTrfl ,_ = (tanhTrfl)S (14) are independent, as is reasonable, we can write
I - cash _fl

lira ao_ = ¢} (t + T) -- ¢_.(t) = 0I' (22)
4. StatisticalDynamicsof the Phase-ErrorProcess_ 1¢} t-_

The actual loop phase error q, (t) is related to tile re- Finally, the probability of loosing phase-lock in t seconds
duced modulo 2r. process q,(t) through (i.e., the probability of slipping one or more cycles) is

given by

(t) = 9.,_k+ _ (t) (15)
p [e)'__ 11 = 1 -- exp [-gt] (2a)

where

[ ,_ ] This result should prove useful in the design of phase- /

k = ._ (t) _ 4' (t) (16) coherent doppler tracking systems.

is the largest integer which does not exceed the bracketed References
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C. Coding and Synchronization Studies: 2. Derivation

On Solution to the Second-Order The equation of operation, for zero initial detuning and
Phase-Locked Loop, J. y,. Holmes r.o moclnlation, is giveu in operator form by (Ref. 3)

I. Introduction _k(t) -_-AK 1;(_) sin ch(t) K F (s)..... ._(t) (1)
8 8

Understanding of phase-locked loop (PLL) operation

began in 1955 with the now classical paper by R. M. Jaffe where s is the Heaviside ope"ator d/dt, q, (t) is the phase-
and E. Reehtin (Ref. 1). Starting with their basic linear error 0 (t) -- _ (t), and K --: k,k,,,k,.,.,,.The PLL model under
analysis, there have been a wealth of papers concerning consideration is shown in Fig. 8. For the practical inte-
extensions, refinements, applications, and new approvches grator, we have the following loop filter:
in the analysis of PLLs, as well as other auto'natic phase
contro 1 .|cvices. 1 I r..s

:- _,,_ > 0 (2)
F (s) -- 1 -F r,s

This present article is coi_eerned with computational

shnpliflcation and an elaboration of the analysis initiated where r, and r._.are real nonnegative parameters. Substi-
in a previous article (SPS 37-49, Vol. III, pp. 297-300), in tnting Eq. (2) into Eq. (1) yields
which an expression for the variance and probability
density function of the phase error was obtained for a s(1 + r_s)_h (t)

second-order PLL. The solution was simplified with the + AK(1 + r:)sin@(t) = -K(1 + r:) n(t) (3)
introduction of a mean-square fit approach to approxi-

mate a certain unknown conditional mean. This idea, To avoid obtaining an equation invol,,ing the derivative
along with an extension t,nd generalization of a tech- of white noise, let
nique due to A. J. Viterbi (Ref. 2), an," ..omc aspects o_
R. C. Tausworthe's "linear-spect'cal theory" (Ref. 3), _(t) = rzh(t)+ u(t)
allowed the development of agc l approximation to the

Then Eq. (3) is eqnivalent to the third-degree equationstationary phase.error variance rectuced modulo 2rr.

-( d)(r,'i',n_,- + AK sin [r.._t +n] + Kn(t))--:0Recertly, W. C. Lindsey,:' using the mean-square ,1 + r::c-_iJ

approach introduced in SPS 37-49, Vol. III, has developed (4a)
a generalization to Nth order loops and has considered
many other a_pects associated with the nonstationary However, it is sufficient, as far as the solution for q_(t) is
case. An additional list of references on the subject of concerned, to solve
PLLs ean be found in Refs. 2, 3, and 4.

_9 [u] a=rt_J -F fi + AKsin [r...fi+ u] = -Kn (t) (4b)
3Lindsey, W. C., "Nonlinear A_alysis and Synthesis of Generalized

Tracking Systems,"Prec. IEEE (in press), as long as q,(0)= _,(0)= 0 and _? [u (0)] = - rXn(0).

INPUT n(t) /

INPUT 0(t) _ A sin (,) KIKm r 2 S

Kvc°

S

Fig. 8. Mathematically equivalent model for the
second-or,:Jerphase-locked loop
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We can l_ow form a Markov vector process in y (t) Furthermore, since z = 6 - r_,b',,we see that

where the components are ff. (t) : u (t) and ff, (t) = ti (t).

.Ve have, using Eq. (4a), :P (4', z) dz - p (4') [4' - v.,E (ff, 1401

tiff,,
d-Y = yl so that Eq. (8) becomes

(5)

Kn(t) 1 (_ -1) _ [E(yll6)p(4,)] + r"A-K [sin4_p(_,)]?4r,dy, _ AK sin(r_ff, + y,,) .... yx (t)
tit T, 7, r,

K_N,,('_., _-_-'e(q,)_
";he Fokker-Planck equation to this system of equations + -- \_-_/_ ?_b'-'

0 (9)

can be shown to be (SPS 87-49, Vo!. III)
This equation cannot be solved exactly either since

_p_ _p 3 {[@K ]p-} E (y_l _) requires the joint distribution funetion of y_ and?t Y_ _yo + _ sin (v=y_+ y_,) 6, which is not available. However, a generalization of
" " the method of Viterbi's (Ref. 2) can be used to obtain

K-'N,, _-' a more workable form of tiffs conditional expectation term.
1 ? (y_p) + (p) (6) Multiply both sides of the differential equation for y, (t)

+ r-_-?y--[ 4r_ _ff_ (Eq. 5) by exp (t/%) and integrate from t _to a. We obtain

where we consider the class of solutions that have con-

tinuonsfirst-orderderivativesintandy,,andacontinuous yl(v)_=y1(a)ex p ( )a-t+ +AK f"exp(t'+t �second-order derivative in yx. The notation p (yl, yo, t) \---_1 / r_ Jr. \ rl /

denotes the joint probability density function of yt = K[ _ (t'-t+'_
[y° (t), y_ (t)] at time t. In order to obtain an equation in X sin q_(t') dr' + 71 J,* n (t') exp \ T_ / dt'
P (4', t), we make the following change of variables. Let
z = y,, and _, = r2y_ + yo, then we obtain Forming E [(') I_t], and noting

_p 1( (__ _p) E[n(t')14"t,t'>t]=O_(+,z,t) =-_ 4-z) +G
we have, letting t' = t ++ r,

+ T2_ {[-_IK sin q_+ --_-1 (q_-- z' ] p}v,_-.,
/_[Vl(V)l¢,] =-7_-_Jo exp T, e

KzNo,_ 3"-'p (7)
+ 4r_ 3¢k2 X [sin4,(t++_-)lcb(t)]dr

l'his equation appears impossible to solve in terms of +E[y_(a)exp(-_t+)14,(t)] /
known functions. Hence, we are led to obtain an ap- /1
proximation for the density of 4'. In fact, let us find It can be shown that
only the stationary density function with Op/_t = 0 in

Eq. (7). First, we integrate out the variable z noting that [ ( _l ]P (G z) l = 0, which follows from the fact that lim E y_ (a) exp a - t* _ (t) = 0, if r_ > 0
a--)_ \ T1 ]

=-'_ (10)

1_(¢,-_,t) = F(¢, _,t) = 0
Hence, we have, assuming continuity in the 4_(t) process,

_. and from the continuity of p (4',z, t). We then have

(')E(wl6)=AK [_exp _ l_[sin4,(t+_)14,(t)ld,rl do

_ ( q_p(fb, - f SzP(q_,z'dz ) (11,7"1

Hence, the evaluation of E (y,l_) has been reduced to
,2aKfb____ [sin _ p (6)] = 0 (8) [sin 6 r) l _ (t)].+ r_ \04,1 evaluating E it +

JPL SPACE PROGRAMS SUMMARY 37.54, VOL. Ill 183

i

1969010076-198



In order to proceed, it is necessary to approximate the we have

conditional expectation term in Eq. (ll). First, note that . _.

7"j,_Ri,(r) dr =- f, R_,,,_(,)dr
lira E [sill cb (t + r) 1¢b (t)] = sin _ (t)

A determination of -/-' is not necessary since it will be seen

Secondly, results of simulation studies indicate the follow- later to cancel out. A tedious calculation shows that R_ (r)
ing relationship for r > 0: is dominated by the exponential term

E [sinff(t + _)l_(t)] _(r)sin_b(t) exp\ 2r. /

Consequent]y, we are led to try an approximation of the
form where r = AKr-'_./r_,and for "normal" design we select the

parameters so that

E [sin_(t + 41¢(01 = C (r)sin4'(t) r 1
-->>--

T" T I

A reasonable method of estimating C (r_ is to mini-

mize the mean-square error between C (r)sin _ (t) and Consequently, the exponential term in Eq. (13) is neg-
E [sin _b(t + T)],b (t)]. To simplify the notation for the ligible in its effect on the integral for normal design. We
following minimization, let _b:= _b(t + r) and ¢_ = _ (t), neglect this term, exp (_/rl), in the ensuing development.

and denote E¢_ as the ensemble average over _ and E¢2 At this point then, we have
as the ensemble average over _b2,given _b_.With this nota-

AK _,_-sin ¢,fo _ Re (T)d_ (14)tion, we then seek C (r) such that E (y_[_b)= rlR_,, ¢ (0)

E% {[E% (sin ¢_1_,) - C (_) sin _1 _}
The final approximation to be made is to assumc _ (t) is a

is a minimum. Performing the minimization, it is found gaussian random process in order to estimate R_,, _ (0)
that the optimum C (r), say Co (r), is given by for all signal-to-noise ratios (SNRs) of interest. (By using

the gaussian assumption, we reduce the calculation of the

E (sin ¢_ sin ¢=) _ R._n ¢ (r) phase-error density and its variance te a simple ealcula-
Co (r) = E (sin __) R_i_ _ (0) (12) tion for all normal parameter values. The o.orreetness of

this assumption is borne out by the comparison depicted
in Fig. 9.) Then, by Price's Theorem (Ref. 5), we have

Hence, with the above mean-square fit to the term

E (sin 'b_]_), Eq. (11) becomes R_, ¢ (0) = exp (- ere)sinh (a_) (15)

AK sin _b f_ /r\ /_.
E(y_lq,) = _), L exp_)R_,,,_(r)d, (13) ,o1° /

It might appear that this expression for the conditional 4 |
mean is divergent; however, as discussed below, the effect _-----"
of the exponential in the integrand of Eq. (14) is negligible 2 - _.•

and, in fact, the integral is finite. Since the moments in "a
Eq. (12) cannot be determined exactly, an approximation _" w°°
will be made similar to that used in linear spectral theory 6 \
(Ref. 3). In this theory, it is assumed that a function 4

(s) _,(-s) exists such that \

I [\
_,(0_,(-s)- S_(s) 1°'10._ _ 4 _ _0._ , 4 _ _°o ,- _ _ _°_

12

where S¢ (s) is the spectral density of ¢,, etc. Furthermore,

if F (s) is very" narrow band, _,(s) = r (a constant) and Fig. 9. Loop phase-error variance a_ versus SNR
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Also, probability density for high SNRs becomes

R+(_)a_= 72 i%(_)a,=-_s+(o) (le)

F( 4a_,_ ( AKT::,+ _.-,) INow using the spectral equation (Ref, 32, we obtain X exp L\_] \ AK-/.-'.+ _ cos _ (21)

N°

S¢ (0) - 2A_/_. or, letting 1'_ AKrg/rl, and noting r ,'>> r,.,/rl, we have,
to a good approximation for high SNRs, the following

Henee, our approximation for E (y_ ]cb) is fnally given by expression:

N°K exp (zg) P (q_)= (2_)-' {I,, r 4A:T., ' r 4A%
E (y, ]_b)= 4At, sinh 4 sin _, (17) (22)

and we see that, as promised, our result does not depend
on _,_. As a partial check on our answer, note from Eq. (21) that

ff r_ = _, then F (s) = 1 (i.e., a first-order loop), and P (¢)
is given by

Since our goal is to obtain the density function of _k,

modulo2rr, we define P(d?) asthe sum of allp(q,+ 2_n) _[ 4(____o)]-' (4A)and normalize it to integrate to one. Therefore, let P ' _,; -=(2r)- Io exp _ cos q, (23)

e (_) = _ p (cb + 27rk) the exact result for the first-order loop (Ref. 2). Further,
_=-_ if we let K and z_ _ o0 such that K/r_ _ K', F (s) becomes

F (s) = (1 + r_s)/s (i.e., the perfect second-order loop),
Then, from Eq. (9), we have for P (4,) and we obtain in this case

(;)d _AKd _,oF/4a,_(A1 )]}-,"=-1 _- [E(ml4)P(4)]+ r, d,b [sin_P(q,)] e(+)=(2=)-' t L\No/ Kr=+l/r=

(18) 1 (24)
• + l/r2 ]J

From Eqs. (17) and (18) it can be shown that which agrees with Viterbi's results (Ref. 2) derived for

the high SNR case. _-

1 /exp _ [rl -- (r, -- r2) t31cos q,
P (_b)= (4A l (19) 3. Comparison of Results

2r I0 '__e-_:-.b-,-(,,- _-_)_1_ Itisofinteresttocomparetheresultsofthismoan-
t--,,.,2 !

square fit to the conditional mean (MSFCM) method with
where that of some experimental data reported by F. G. Charles

and W. C. Lindsey (Ref. 4), as well as with some previous

No exp (_,_) (20) results. The PLL used in Ref. 4 had the following relevant
fl -- 4A2r_ sinh _ parameters:

Subsection 3 demonstrates the method for obtaining _r_ r_ = 45.2
versus No/4A 2and, hence, through Eq. (20) the value o_ t3.

r_ = 0.125 i
t

In the high SNR ease (SNR 2 10 dB),/3 is given quite AK = 5,800 i1
i accurately by/_ = 1/(1 + r) anti the stationary phase-error r = 2.0 t
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Tile density function P (_)in Ref. 4, was obtained experi- and, hence, one has a simple method of obtaining the
me,_.t011yand the variance was computed from this. relationship between (r_ and SNR. Using this method,

the varianee was computed and plotted in Fig. 9. As can
In order to obtain a numerical value for the variance be seen from the figure, both the spectral method and

from the method presented in Ref. 4, a knowledge of (r_ (a) the MSFCM method Tarovide relatively close fits. In fact,
is required where the MSFCM method yields negligible errors for SNR -'_

2 dB, which encompasses the useful range of interest. For

cr_(,_) = f_ q_ exp (_ c°s q_)2rd, (a) dep (25) SNR-_ - 10 dB, the linear spectral method, the MSFCMmethod, and the linear method, as well as the others, all
converge to essentially the same curve.

This method deviates from that given in SPS 37-49,
Vol. III, pp. 297-300, in that a simplification is introduced References
here that makes the evaluation of the variance a simple
matter not requiring the use of a computer. 1. Jaffe:R. M.,and Rechtin, E., "Designand Performanceof Phase-Locked Circuits Capahle of Near-Optimum Performance over a

Wide Rartgeof Input Signals and Noise Levels," Trans. PIGIT,
A graph of ,r_(_) versus , is given in Fig. 1O. From Mar. 1955.
Eqs. (19) ai:d (20), assuming r_ _ > r.., we have 9.. Viterbi, A. J., Principlesof Coherent Communication. McGraw-

Hill Book Co., NewYo&, 1966.

= { 4A'-'r_'_//1 N,, 2 )1 3. Tauswortlae, R.C.,Theo,'gandPracticalDesignofPhase-Lockeda \ Nor2/L\ 4A-_-' " 1 - e -2_J (26) Receivers, Vol. I, Tecl_tnicalReport 32-819. Jet r.: pulsion Lab-oratory, Pasadena, Calif., Feb. 1966.
4. Charles, F. G., and Lindsey,W. C., "SomeAnalytical and Exper-

Hence, once a_ and _ are specified from Fig. 10, No/4A °- imental Phase Locked Loop Results for Low Signal-to-Noise
can be computed from Eq. (26). The SNR AVNoWL is Ratios,"Proc. IEEE, Vol. 55, No. 9, pp. 1152--1166,Sept. 1966.
then given by 5. Price, R., "'A Useful Theorem for Nonlinear Devices Having

GaussianInputs," Trans. PIGIT, IT-4, June 1958.

SNR = \ No ] \ r + 1] (27) 6. Middleton,D., Introduction to StatisticalCommunicationTheory,Sections 1.3and 1.4-3.McGraw-HiUBookCo., NewYork, 1960.

4

'MSFCM METHOD -"C)-- EXPERIMENTAL
2

e_. _ VOLTERRAEXPANSION

 ,oO _ / ?.

"
INEAR

a.. APPROXIMATION

lo"l I I
0 1 2 4 5 6 7 9 10

, toot'SNR: A2/N0WI.,,',,

Fig. 10. e_ I(_)versus,_
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D. Coding and Synchronization Studies: Power at the receiver by means of a reference carrier preceded

Allocation Length Into Rapidly Varying by a phase-locked loop (PLL). This demodulation pro-
duces (Ref. 1)

Phase Error, w. c. Lindsey_and J. F.Hayes

1. Introduction y (t) = xk (t) [(1 -- m _)P]_,_cos _b(t) + n' (t) (2)

In a recent paper (Ref. 1) design trends were estab- where
lished for the allocation of power between the carrier and

the information-bearing portion of a transmitted signal. _ (t)_ _ (t)- _'(t)
Both one-way and two-way phase coherent communica-
tion systems were considered. This work was predicated is the error between the phase shift in the channel 0 (t)
on data rates high enough that any error in estimating the and the estimate _'(t) of this phase shift given by the
phase of the radio-frequency carrier could be taken to be PLL, and n' (t) is white gaussian noise with single-sided
constant over the du;ation of one signaling interval. In power density spectrum No W/hz. The decision on the
the present work the same problem is considered; how- transmitted signal is mad'e by correlating y (t) with the
ever, the assumption that the phase error is constant over possible received signals. Therefore we form
a symbol time is removed and the phase error is allowed

to change appreciably over the signaling interval. In both fT
works it is assumed that reference phase is derived exclu- q = Jo y (t) ix: (t) - x_ (t)] dt (3)
sively from the carrier. Alternate approaches that envision

deriving tile reference phase from the data portion of the If q _ 0, we decide that x: was transmitted; otherwise
transmitted signal lead to quite different results (Ref. 2). we take the transmitted signal to be x_ (t).

Rapidiy varying phase errors are known to affect the
operation cf command and telemetry systems in deep- 3. System Error Probability

space communication systems. Consequently, a theory for For a given realization of the random process q,(t),
predicting their deleterious effects on system performance 0 "_ t _ T, q is normally distributed with mean
is needed when carrying out a particular design or in the
testing of a fabricated system to see that system perform- t'T
anee meets specification. In this article draw heavily = ±2 [(1 - m _)P,,, / cos _ (t) dtwe /x

upon the notation introduced in Ref. 1. We also assume
jo

that the subcarrier and bit-sync jitter produce negligible and variance _ = 2TNo. The conditional probability of
effects on the detection process. Procedures for handling error has been shown (Ref. 1) to be given by
these effects, if appreciable, have been reported in Ref. 3.

f;2. System Model PE [_, (t), 0_-_ t _ T] = R_..,,,,,r]_ exP(2ar)_/_(--x2/2)d,x

We consider binary phase-shift-keyed signaling for (4) /7"

which the transmitted signals are of the form where //

p (t) = (2P)U sin [_ot+ (cos-xm) xk (t)], k = 1, 2 R _ 2 _oo
(1)

Y_ lf. rwhere xk = ___1, P is the total transmitted power, and m _ cos _ (t) dt
is the modulation factor which serves to apportion power
between the carrier and the side-bands. The signal p (t) The average probability of error is found by averaging
is disturbed in the channel by additive white gaussian over the random variable Y.
noise with a single-sided power density spectrum
No W/hz. The signal also suffers a random phase shift However, the exact computation of the probability
0 (t) in the channel. The received signal is demodulated density f,(y) appears to be a formidable problem. In

order to circumvent this difficulty we ast_ume that the

'Consultant, Electrical Engineering Dept., University of Southern phase error is small enough so that the linear PLL theory

California. can be used. For most practical situaUons this assumption
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is valid. The consequences of this assnmption are two- where
fold: First, from tile linear phase-locked loop theory

(Ref. 4) we know that ,p(t) is a gaussian process; second A(z)=[R(1-m'-')]_/'.'(t-_2- )we can make the approximation (valid for the linear

region of operation) _r_= N,,Bf,m"P

lf"Y = 1 -- _ _2 (t) dt (5)
In the limit as 8 approaches infinity Eq. (14) becomes

Thus the computation of It- (y) reduces to computing the 1 C

- - '_Jr exp (-y"/2) dy (10)probability density of the integral of the square of a PJ': (2rr), _1-,,,'.'_',',gaussian process.

wlfich checks with the case for perfect phase synctu'o-.
In the ease of a first-order PLL, a useful approximation nization.

to this density is known (Ref. 5). The PLL tracks a carrier
of power m2P immersed in white gaussian noise with 4. Numerical R_.sults
power density spectrum No W/hz. The correlation func-
of 6 (t) is The double integral in Eq. (9) has been evaluated over

a range of values for the parameters m, 8, and R. In Fig. 11
B_N,,

R_ (r) = _ exp [ - 4B,, ]71] (6) we plot P_ as a function of m" = P_/P, with R as a pa-rameter, for several different values of 8. These curves
exhibit the same behavior (Ref. 1) as those plotted for the

where Br, is the equivalent noise bandwidth of the loop case of slowly varying phase error. For each value of R
(Ref. 1). The probability density fz (z) of the random and 8 there is an optimum modulation factor, e.g., m,,,
variable for which the probability of error is minimum. Also, mo

fo" decreases as 8 increases. In Fig. 12 we plot mg as a func-
m_'P '__2 (t) dt (7)

z - NoB_.T • tion of R with 8 _:s a parameter. Finally, in Fig. 13 we
show the minimum probability of error PEo corresponding

is well approximated by (Ref. 6) to me as a function of R with 8 as a parameter. These
results may be compared with those obtained in Ref. 1

1 [ 1( q_l)l for the case where _ (t) isconstantforO/-t_T. TheyJr.(z)= _exp (2/8)z_exp -_- z , may be further used to design phase-coher_;nt systems
with 8 < 1.

0_z--_ _ (8)
5. Conclusions

where 8 = 1/TBL is the ratio of the sy'_tem data rate 1/T
to the bandwidth of the carrier tracking loop BL. The As we have seen here and in Refs. 1 and 3, the phase-

error introduced into the data detection process by a
density given by Eq. (8) is extremely accurate for 8 "_ 5, radio-frequency carrier tracking loop produces deletezi- /the case of interest here. We further assume that the

data is modulated onto a square-wave subearrier whose ous effects on system performance. As opposed to the /
fundamental frequency is sufficiently large so that the problem considered in Ref. 1, this paper has treated the
power in the modulation does not ente. into the band- case where this error may vary over the duration of thereceived symbol. Useful design trends and results were
width of the loop. If, in fact, this is not the case, any established for the situation where the error q, (t) may be
appreciable sideband power whic!; exists around the ear- considered gaussian. For most practical applications thi',
rier would act as a self-noise in the loop and tend to
introduce more jitter on the reference phase. Such de- assumption is valid.
signs are, usually not interesting in practice, even though

! the analysis is relatively straightforward. References
1. Lindsey, W. C., "Optimal Design of One-Way and Two-Way
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--_=0.5_0 [ To obtain information about the usefulness ot these

2 /- 0.250 ] sources an ob:,':'vational program was started m early

/--- 0.125 I August at S-band. Tlm object of this program is to exam-
101 ine all pulsars as they arc discovered to determine their

- ( --0.100 ' usefulness as an absolute time standard. It is prefel'able6 I
I

4 ( /--- 0.075 _ to use .;ources with a large stable flux density in order to

increase the signal-to-noise ratio and therefore reduce the
\ 0.050 time required to make an estimate of pulse arrival time.

f Tim pukc shape should be stable and, if possible, should10-2

t _ haw a structnl'e that can be used to estilnate arrival time.

_ 6 - / _ readily, As of Novemher 1, four sources have been fotuK[

uJ

4 which satisfy the above criteria. Time versus average flux

o 2 - plots of these sources are shown in Fig, 14. Although ind_-
vidnal pulses are generally too weak to be observed,

__ _0-2 -- averages of many pulses are easily detectable. Regular

z 6 / weekly observations of these sources will be made for a

4 period of at least 1 yr. The differenec' between predicted
and measured arrival times will be minimized in the least-

2 squares sense, using differential correction techniques to
confirm the sourc'_'s celestial position and pulse period.

1°-4 -- Right ascension, declination, distance, period, and galactic
6 - rotation are among the parameters to be estimated by the

4 / / _ least-squares fit. This information is required before aecu-

2 rate predictions of pulse arrival time can be made. Fur-
ther, this information is valuable in determining the

1°'5 inherent stability of period and celestial position for pos-0 20 40 60 80 100 120

sible optical identification.
R= 2PT/N 0

Fig. 13. /_,inimtJmerror probability PeoversusR 2, SystemDescriptionfor various values of 8

A block diagram of the system is shown in Fig. 15. The
only special equipment required is the pulsar timer, which
supplies one interrupt to the computer per pulsar period

E. Propagation Studies: Absolute Time by Pulsar, and 5000 sampling pulses to the analog-to-digital con-
G. A. Morris, Jr. verter every period. The 1-pulse/s signal from the cesium

clock is used to start the timer on an exact second so that

1. Introduction arrival time measurements may be made. The synthesizer
Rapidly pulsating radio stars were reported early this used to detennine the period is driven from the cesium /

year by the radio-astronomy gr,mp ot Cambridge (Ref. 1). clock 1-MHz output so that stability of period is obtained. /,
Further investigation confirms that th_ periods of these Data is obtained by sampling the signal 5000 times per
sources are quite regular, and several sources have been period ai_d integrating the data for 500 periods. Data is
identified. The regular pulsations of these sources sug- normally taken for 1 h. Then the syuthesizer is changed
gest they might be useful as an inexpensive means of to a new frequency to correct for variations in the appar-
determining absolute time among the Deep Space Net- ent period of the pulsar caused by the orbital and rota-
work stations, tional motions of the earth. Data is recorded on magnetic

tape, after being integrated over 500 pulses, for later
analysis in the least-squares fit.

In order to be useful in determining absolute time these
sources must have excellent long- and short-term stability.
To l:e useful from an operational standpoint it must be 3. Varlance-Covarlance Analysis

possible to predict the arrival time of a pulse and also to A variance-covariance analysis was performed to deter-
make an accurate measurement of the arrival time in a mine how accurately several parameters could be mea-

i short period of observation, sured for the source CP0950, assuming arrival time
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Fig. 15. Block diagram of pulsar system /

measurements accurate to 100 #s. Present data indicates A simplified earth orbit was used, and the source was as- ,

this is a reasonable estimate of accuracy. The standard sumed to have no proper motion, n_ radial acceleration,
deviations for position and period are shown in Table 1. and a constant period. The position obtained by this i

technique, after 1 yr, should be of great benefit in making f

Table 1. Variance-covariance analysis based on arrival an optical identification. The standard deviation of the ;

time measurementaccurateto 100/zs for CP0950 period ranks with the cesium standard as to stability, i
!

Parameter Standard deviation

Period 3.07x 10"asoc Reference :
Rightascension 0.00293arc sec

1. Hewlsh, A., etal., "Observation of a Rapidly Pulsating Radio
Declination 0.00763 arcsec Sonree," Nature, Voi. 217, pp. 709-713, 1968.
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F. Communications Systems Development: Efferts The correlator output, on which the decision as to
whether x_(t) or x_ (t) was sent is based, can be shownof Phase-Locked Loop Dynamics on
to be given by (Ref. 1)Phase-Coherent Communications,

I. F.Blake:'and W. C. Lindsey"
IT

q,, =j,, [x,.(t)cos_(t) + ,,(t)] [x_(t) -- xl(t)]dt (2)1. Introduction

In a recent paper (Ref. 1) one ot the anthers analyzed
the performance of a phase-coherent receiver preceded If ql_ is negative, we decide that x, (t) was sent, and if
by a bandpass lirniter. Two expressions for the error positlvc, x. (t). It is assumed that the signal-to-noise ratio
probability were given for the cases: (]) where the phase in the tracking loop is such that the phase crror process
error varies rapidly over the symbol interval, and (2) where _, (t) is gaussian with con'elation fimction
the phase error remains essentially constant over the sym-

bol inte_wal. The parameter which essentially character- /1_ (r) =: I exp [ - _,lr [ ] = _, exp [ --/It I] (3)
izes how fast the phase error varies relative to the symbol m.

time 7" is the ratio of the system data rate :,_ to the band-
width W_.,, of the loop at thc design point; i.e., _= :/?/WLo. This assumption is justified in the case of a fir._t-order
In practicc, the question naturally arises as for what loop with no ],::,dpass ]imitcr preceding it. For the case
region of 8 will case (2) analysis be valid. It is also of under consideration here, it is an approximating assump-
interest to understand how tl_e error rate changes as the tion essential for the analysis. The agreement of known
parameter _ wlries over all regions of the phase-error experimental and theoretical results tend to support
variations. Consequently, the purpose of this article is to its use.
present an analy,_is which deals with the general case

of the phase-error variation for all values of 8. The results The parameter ,/ in Eq. (3) is defined later in terms
are particularly useful in the design of medium-rate of loop and fil'er parameters in Eq. (11). When the loop
phase-coherent communication systems used for space is preceded by a band-pass limiter, the quantity _q, in
communication, e.g., Mariner-and Pioneer-type telecom- Eq. (3) is well approximated in the region of interest
munications systems, in practice by (Ref. 1)

2. SystemModel 1
"7. =pt.

If the received signal is trac!_ed by means of a phase- a_.
locked loop, the output of the phase detector can be 3z

written as = 1"(1 + 2/t_)

U(t) = xk (t) cos _ (t) + n (t) (1)

I" = 1 + 0.345zu _-
where _ (t) is the time-varying phase error in the loop, 0.862 + 0.690 zy /
and n (t) is white gaussian noise of two-sided spectral /
density N,,/2 watts/see (Ref. 1). The signals Pc

z = N,,bt.o

xk(t), k = 1,2 i
bt,o

are constant over the bit interva! of duration T see: Y = b,

...,,
_ResidentResearchAssociate,NASA-NRC.

eConsultant,ElectricalEngineering Dept., University of Southern To =- Pc____o (4)
Callforni_. NoBLe
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where P,. is the carrier power, b_. and b, are loop and The probability density of the first integral in Eq. (8) is
IF amplifier (in the double hetcrodyne receiver) band- very difficult to determine. However, a useful approxi-
widths (w, = 2b,, wt. -----2b_.) (Ref. 1). The subscript 0 mation to it has been found (Ref. 2):
refers to tile values of the loop parameters at the design

point, which is defined as z,, =T,, = coostant. The pa- [fl_
rameter/_ is the ratio of the limiter suppression factor at g (x) = oL_,_-} ep"(p_.x)-v-'the design point to its value at any other point and

It, (x), k -_ 1, 2 X exp - pLX+ , X_ 0

(10)
are modified Bessel functions of order k. The parameter
zy is the signal-to-noise ratio at tile output of the receiver where
IF amplifier.

PL=
3. ErrorProbability Calculations

If the parameter z is suffciently large, the cosine term 1 _/1 + ro/_
in Eq. (1) can be replaced by the approximation -- _- \ _] (11)

cos _ (t) _ 1 - _'_(t) where -/is the parameter appearing in the exponent of- 2 (5) the correlation function in Eq. (3), ro is a loop parameter,
t_ is as defned in Eq. (4), and

It turns out that in practice this approximation is suffi-
ciently accurate in the region of interest. The decision _1_ ._

variable becomes 8 = WLo - 2bLo (12)

f:qk = flkT -- -2-Bk _ (t) dt - 2A n (t) dt (6) The density in Eq. (10) is a unimodal function which iszero at the origin and a maximum at
where

1F 9...._ , 4 ql_ 3

flk xk(t) [x2(t) -- x_ (t)l x = _ L/3_p_ -c _-j 2flLo_
(13)

= -2A 2, k = 1

= +2A 2, k = 2 (7) The approximation to the true density becomes very close
for flL > 5. As ilL'--> oo, the maximum tends to x = 1/0L :__

Define the new decision variable and the function tends to a delta function at this point.
o As /3z-->0, g (x) tends to a delta function at the origin.

(qk - fl_T) Similarly, for fixed fl_ as pL--'>oo, the function tends to

zk = 1 a delta function at the origin. Notice that in order to ;
flkT make the approximation to the cosine valid, pL should

1 fr _2 2A fr be at least 3 or larger.

= T Jo (t) dt + 2T----&TJon (t) dt (8) i"If it is assumed that the two integrals in Eq. (8) are t
independent random variables (an approximation which

where now it is decided that x_ (t) was sent if zk > 2, can be partially justified on physical grounds for the
and x2 (t), otherwise. The second term on the right-hand case of interest here), thep. the probability density of
side of Eq. (8) is a gaussian random variable with mean the random variable zk can be written as
zero and variance

@ 2No _ 2 f0_* 1 [ (zk-x)2"] ,,= A"T - R (_) p = exp 2-J J g (14)
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Assuming xl (t) was sent, the probability of error 10-1: J _ _r_R ;4.8 _ ' _ J-_
6 r0 = 2.0

P±-= prob [zl, ,"-2] TO : 2.0
4 bL=_LQ = I

= _ (27r¢)_''-'_xp 2¢" _]g(x) dxdz

(15) 2 o

Interchanging the integration yields _ 1°-2 l_--

Fe=fo erfe(_)g(x)dx (16) _ 4

where eric (-) is the complementary elTor function 2

erie(y) = exp(-S-/g)du (17) 1°-310-1 2 4 6 100 2 4 6 10 |

DATA RAT/:, blts/s

Notice that as p_,--->_o, PE_ erie (2R)1/_which coincides Fig. ]6. Error probability versus data rate {phase
with the result obtained in Eqs. (24) and (38) of Ref. 1 error varies over bit interval), R = 4.8
under this condition.

4 I I I I I I I I I

From the results of Ref. 2 it appears that the density
R =9.1

function of Eq. (10) becomes a poor approximation as flL 2 r0 _ 2.0
decreases much below unity. Since a"0 : 2.0 ,

10-2 Y = bH = 40_

fl_= T \ f_--_ / (18) _ : 2.0_°
4

this corresponds to 8 being greater than
2

l+ro } __ 10-3

<c

The parameter /_ is a function of x (= z/2) and other _ 6
parameters. To find the region of validity of the curves, 8 4
consider first Fig. 16, where R = 4.8. For x = 4, /__ 0.5 _ ]_-
and the curve is valid for 8 < 2. For x = 300,/_ -- 0.078
and the curve is valid for 8 < 9. Drawing a straight line 2
between these points gives a good approximation to the
region of validity. The same limits hold for Fig. 17 also. lo-4

6
4. Resultsand Conclusions

4

That component of the error probability, assuming

phases reduced modulo 2rr, has been evaluated based 2
upon the approximation that

_(t) '°'5,0-' 2 4 6 ,0° 2 4 6 ,0'
cos,h (t) = 1 2 oaTa RATE, blts/s

This does not imply the assumption that _ (t) is small, Fig. 17. Errorprobability versusdata rate (phase
i.e., linear PLL theory holds. If linear PLL theory were error varies over bit interval), R = 9.1
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invoked cos _ (t) would be replaced by cos 4, (t) = 1 and engineering telemetry instituted a reevaluation of these
siu,/,(t) _ q5(t). On the other hand, in order to describe analyses. The following report is a tabulation of the
the statistics of method for determining the demodulation efficiency as a

function of loop phase error. Performance is then related

if 7'Y---_ cos 'b (t)dt to these effleleneles through tile modulation index. This
method was chosen because of the flexibility it affords
when many indices, bandwidths, etc., are being con-

1 fr__ 1 -- _ _" (t) dt sidered.

it has been necessary assume that ,/,(t) is gaussian. In 2. Efficiency Equations
principle, however, this assumption is not at all restric-
tive since the variance of the actual _ process at work Tlle output of a coherent amplitude detector is a process
in the loop can be substituted into the probability distri- of the form (Fig. 18)
bution fi-(y). Thus the nonlinear effects of the loop are

z (t) = p_/2m (t) g (4,) + n (t) (1)taken into account.

in which n (t) is wide-band noise normalized to have the

Figures 16 and 17 illustrate the perforlnance of a binary same two-sided spectral density N,, = N+/9., as the _nput
phase-shift-keyed communication system when ,],(t) varies noise; P = A °_is the rms detected sideband power; g (qs)
over the symbol interval. The signal-to-noise ratio is the detector phase characteristic, normalized so that
R = STo/N,, has been set such that the error probability g (0) = 1; and m (t) is the detected modulation process,
of the system would be 10-:_(Fig. 16) and 10-_ (Fig. 17) normalized so that E (m -°(t)) = 1. The modulation wave-
in a perfectly synchronized system. For values of 4_ __5 form we shall assume is one of M messages {ink (t)}, for
the results check, for all practical purposes, with those 0 _- t < T.
given previously (Ref. 1) where it is assumed that cos 'k
is essentially constant over the symbol interval. For

8 < 4 the results presented here begin to deviate appre- COHERENT
ciably from those where cos 4,is assumed constant; hence, INPUT,x(t) - _ AMPLITUDE _ OUTPUT, z(t)

DETECTOR
the model introduced here wiU be useful in designing

and testing of phase-coherent systems which operate with

8 < 4, tile low-rate end of the region of 8. IREFERENCE'v(t)
PHASE-

References LOCKED
LOOP

1. Lindsey, W. C., "Perfom_anee of Phase Coherent Receivers
Preceded by Bandpass Limiters," IEEE Trans. Comm. Tech.,
Vol. COM-16, No. 2, pp. 245-251, April 1968. Fig. 18. Coherent detection by loop-derived ?.-

2. Grenander, U., Pollak,H. O., and Slepian, D., "The Distribution reference
of Quadratic Forms in Normal Variates: A SmallSampleTheory
With Applicationsto SpectralAnalysis,"1. Soc.Ind. Appl. Math.,
Vol. 7, No. 4, pp. 374-401, Dee. 1959. The process z(t) is the input to a set of correlators,

whose outputs at the end of a T-see message are

G. Communications Systems Development: wk = _ m (t) mk(t) g (_ (t)) dt + N (T) (2)Efficiency of Noisy Reference Detection,

R. C. Tausworthe N (T) then is a gaussian random variable with variance

1. Introduction No
Lindsey (Ref. 1) has published results which, for a o._.=-_-- (3)

given modulation index, relate the observed signal-to-

noise ratios (SNR) to equivalent signal losses caused by We shall also assume that the phase-error process is
the noisy demodulation process. Recent measurements of derived from a phase-locked loop tracking the carrier
the performance of the 8_-bits/s Mariner Mars 1969 or subearrier. The loop bandwidth will be denoted wL t
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and tile phase-error density p (_b). The integral term of so that the averaged error probability yields the overall
Eq. (2) can be written as a mean value pins a variational error rate

term PE(R ',5)=fP_(R'Sg(q,)lq,)p(_)d4, (10)
wl, = A (rkp,+ vk) + N (T) (4) '

The degradation is then clearly
in terms of the normalized cross-correlation rk between

the incoming message m(t) and the kth stored one, 1

mid(t), where p, = E [g (q,)], the vk are random variables _1_=_ {P_ [PE (R_'_)]}2 (11)
which depend on the value of k, and v = (v,, • ' " , v,,,)
possesses some distribution p(v). The actual overall
probability of error is the average conditional error prob- Because of the convexity of the function Pr [E Iv], it fol-
ability lows that the actual emciency is bounded by Eqs. (8)

and (n):
P_:= f Pr [error IVl, • . . , v,,] p (vl, • • • , vm)d:,_ • • ' d_,, _ --__ _--v° (12)

(5)
3. Error Probability

The difficulty in specifying the characteristics of Since Eq. (11)requires it, let us consider the error
p (Vl, • • • , v,,) lead to approximations for Eq. (5). probability function. For no coding and antipodal binary

signals, the error rate is
First, if the loop response is considerably more rapid

than the integration time T (i.e., _ = 2/wL T < < 1) then 1
the correlator output tends to the average P_ = _- erfc (R) _/_ (13)

_k_ 0 (6)
For orthogonal, equi-energy signals, the error rate is

in which case the outputs appear all to have an equiva-
1 f_lent constant factor E [g (4_)] multiplying the signal am- P_ - exp (-y"-/2)

plitude A. Performance is then the same as it would be (2_')v2J__

if the signal power were reduced by the factor E 2 [g (,/,)].
[ 1 f,+,_,'_ 7_-,The error rate will fit the usual maximum likelihood × exp(-v2/2)dv dy

theory, giving rise to a probability of error as a function [-(-_-J_ J

Of the matched filter SNR parameter 0,,t: _M@ (R) 1'_
;_ erfc (14)

O,,t = -_+ E'_ [g(_)] = RE' [g(_)] (7) As a function of R, biorthogonal codes behave much the

santo (Ref. 2) as Eq. (14) indicates. Thus, for the three
in which R = PT/N+ is the undegraded value of O,nt. In cases (no coding, orthogonal, biorthogonal) we have
this case, it is easy to see that the detector efficiency
is merely

erfc (XR_)_,_

_1o= E z [g (4')] = _" (8) PE (R?) _, P_ (R_o_)erfc (hRo) _/2 (15)

A second approximation can be made when the loop for any values Ro and R_ of R. The coefllcient X relates
;. is very sluggish with respect to the message (i.e., to the cgding:

8 = 2/w_T >> 1). Then, over the interval (0,T), the
i phase error is nearly constant (but randomly distributed
._ according to p (_b)). In this case, the correlator outputs {i, uncoded

are very nearly X =

we = Ark g (4,) + N (T) (9) , coded (orthogonal/biorthogonal) (16)
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Based on this O. a certain loop phase error _2 is present
We can set R',o_ = R',_ and R_ = R'_g (¢), above, to eval- in the loop:
uate Eq. (10):

Tg 4 '_

_._ + _,Z_)_ (-I)'I'(°)._
P,_(tt'/,) -- PE(R!5) /] erfe(,_R),Ag(d_))p(do)dcb,erfc (XR)'._ "='

(17) 1
as o -->co (24)

P

But the same error rate would occur if the value of R

were Re_ and no degradation were allowed: It also follows that tlm degradation for 8 < < 1 is

= { t, (0)_2 (2_)7. \I,-_0)/(R'5_ -- Pe (R',_)
P, (R',_) = P, ,--b_, erfc (XR)½ erfe (XReq)½ (18)

It is then clear that The value for 7oohas been obtained by numerical integra-
tion, and appears along with the 70 of Eq. (25) in Fig. 19,
cross-plotted as a function of the loop error. It may be

1(_ If( J_n_2 noted that when _2 is small, the two bounds convergeRe_ = _- erfe -_ erfe ((XR)'_g (_b))P (_) dq, approximately to the gaussian-phase-error result

(19)
1

1 - 70 _ -- _ _o_, 1 - exp (-_') (26)
and, correspondingly, that o

But as d'egradation becomes an appreciable percent, the

7oo=_-_ erfc-' erfc ((XR)_,_g(_))p (q,)dg, two separate and depend not only on ¢r2, but on XR as
-_ well. Because of the increasing steepness of PE with XR,

(20) the degradation for 8 > > 1 becomes more drastic as
XR increases. The degradation for 8 < < 1 is, however,

Thus, it remains only to evaluate Eqs. (8) and (20) for independent of hR.
given g(_) and p (_b) to obtain limits on 7_.

5. Subcarrier-toop Degradation

Assuming that the subcarrier is a square wave, the
4. Carrier-Extraction Degradation detector characteristic becomes triangular:

For the carrler-extraetlon process the detector char- /,e x-aeteristic is o 3_ P _

g(_)---1 "--I_1 forl¢l-"- , _ -y (27) /-g (q,)= cos_ (21) '_

The approximate loop error density (based on a first-order
and the phase-error distribution, based on the first-order loop) is again related (SPS 37-31, Vol. IV, pp. 311--325)
loop theory, is approximately (Ref. 3) to the loop equivalent SNR by

27rlo(0) _exp - 62 , forl_l_--_/2
v(_) = 1

: in terms of the loop equivalent SNR (Ref. 4) _ exp - p 1 -- , rr/2 _'-_-

-',',: Now_P°r (23) C = (20)v, .[erI + e-0 h (28) ip = !
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Fig. 19. Loop-derived reference degradation bounds for carrier tracking loop

where the imaginary error function Again, the values for 7._ have been obtained by numerical
integration, and the two different behaviors plotted in

2 fj Fig. 20 for comparison. As was evident in the previoush (x) = -_d et_"dt ease as well, the two degradations at low cz behave like

= _-x _ (2. + 1) (2g) 7o= 1- _ 1- 2 ¢ (82)
_=0

The phase-error variance is then as would be predicted by a gaussian 6-process theory.

(_.)5/, _ { [(_),,_ ] [(_.) _',] 6. InterpMafion Bel'ween _oand _, /-or2 0 '7_C err +(4p 1) h For a given normalized code-word rate 8 = 2/wx, T, the ,f
actual efficiency 76 lies between 7o and 7oo.To compute

/2o\__._.}l&e_p/z(1 e_p/2)_('l (30) extremely difficult task, since the statistics- 4 - 7_ exactly is an
\ /

of @krequired by Eq. (4) are unknown. What we shall

and the low-rate efficiency can be straightforwardly develop here is an interpolation formula for 76, rather
obtained as than a direct evaluation of the efficiency. One very good

approximation of the error probability in the vicinity of

erfLLff) J-e-Ph LL)J
70= e_(a_)_ e_(ao_)e_,_0-_,, (a3)

[0)"]err + e-p h

for two comparaUve values Ro and R_ of R = PT/N �„�for

{ L\a!('-e-J ,2,2 [(_) 1}} both no-coding and orthogonal/biorthogonal coding,
X 1 - [rrp'_w f , FTP-'_--" _ according to the value of _,. We take Ro to be the valuekY)  or,c -,-,h i

(al) ao= a_ =a E_[g(_)] (34) 1

_98 _etseAceeeooeAMsSUMMAer3r-s4,rot. m
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Fig. 20. Loop-derived reference degradation boundsfor subcarrler-tone-tracklng loop

corresponding to the correct word in Eq. (4):

Rl=R(p,+v) 2 (35) = (_/_ [2_? R_ - ?_Ro]+ ... (37)

Then we can equate the observed error probability as

having occurred with an equivalent value of R = Re,j, When g_ is small, the first term will dominate the be-
with no reference phase error: havior of Eq. (37). Hence, as a result, we see that

-- = a (38)
7o-- 7_ \ (rv,,ol ,7"-"

l - /• in which e_,oois the variance of v as $--> oo. Hence, the
interpolation formula we seek is

78= (1- a)70+ aTo (3g)
The form of PE displayed in Eq. (33) then provides

and is valid whenever Eq. (37) is dominated by its first

v v)x(a0-al)=lnfe_p{-Xao[(_)'+_(7)]},( av term.

The parameter a defined by Eq. (38) involves only the

f{XR (70 - _) = In 1 - XR_ + 2 expectation of the square of

dPt SPACE PROGRAMS SUMMARY 37-54, VOL. III 199

1969010076-214



which is given straightforwardly by (Ref, 5) while, if g (_) is the triangular function present in square-
wave subcarrier extraction, then

._= 8 1- _ [R.,_,(x/_oL)- R_,_,,(_)]dx at,,,t)(.) - R.,(_)(_) =
(41)

(2) IR'(r) sin-'(R'(r))sin-l(R_("r)_The asymptotic values of a_,at very small and very large 8 \ a_ /
then verify our previous intuitive claim: -1

+ (aS - R_ (r))',_ - "_/ (44)

18fo_°[Ry,t,(x/w,.)-Rg(_,,(oo)]dx, as 8--> 0 ,,

..1

o.-. Furmer, we can model the correlation function of _ by
the simple first-order loop result

_a.o _ as _ --_ oo

(42) _b(_)= _ exp(- 2wLI•I) (45)

It thus remains only to evaluate _ at a particular vah_e and thereby evaluate the parameter a.
of 8. The ratio of the two variances cr_and a_ then give
the parameter a. But because the loop is nonlinear, At best, the evaluation of a requires numerical inte-
R_t) (r) is not known, although there are several approxi- gration, of _r$ is small in the carrier 1,'op case, however,
mations available for calculation of R_ (r). We can model the approximation in Eq. (43) can be used to give

(t) as a gaussian process having the same variance and

bandwidth as the q_-process and thereby evaluate the a(can'ierloop) = 8 1- e-_'dx
autocorrelation of g (q_)in terms of that of _ (t) by Price's .,,,
Theorem (Ref. 6). For example, if g (f_) = cos cb, then

=¥ 1- g (t - e-_) (46)

(1) and is independent of _g. This a is plotted in Fig. 9.1.

1 The numerically integrated, more exact value at eg = 1
¢3-ao_R_ (_) (43) is almost indistinguishable from Eq. (46).

o_ /

_'Z CARRIER-TONE0.4 --

_z

0.2 _

0 *

I0"1 2 4 6 I00 4 6 I01 2 4 6 102

8 = CWLT

Fig. 21. Interpolation parameter a far sine wave (tarrier tone) and square wave Isubcarrler tonel
loopsas a function of the normalized data word rate
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In the triangular subearricr ease, a reduces to the 4. Tat_sworthe, R. C., Theory and Practical Design o Phase-
integral Locked Ilece_,cer_.Vol. I, Technical Report 32-819. Jet Propul-

sion Laboratory, Pasadena, Calif., Feb. 1966.

a (subcarrier)= 8f'l/'(4)7r- 2 J, 1 - [e _sin -_(e -_) 5. I)avenport, W. B., and Root, W. L,, Random Signalsand Noise,Sec. 6-5. McGraw-Hill Book Co., Inc., New York, 1958.

+ (1 -- e--_)_,_-- 1] dx (47) 6. Price, R., "A Useful Theorem for Nonlinear Device Having
GaussianInputs," 2RE Trans.In�o, Theory. Vo] IT-4, pp. 69-72,

which is also independent of ,_. The variation of ¢twith June 1958.
8 is depicted also in Fig. 21. The approximate expression

0,09135 _ + 8" H. Information Processing: Limlters in Phase-
a (subearrier loop) = 1 + 3.3718 8 + _-_ (48) Locked Loops: A Correction to Previous

Theory, R.C.Tausworthe
provides a simple formula for amazingly accurate results.

I. Introduction

7, Conclusions In 1953 Davenport (Ref. 1) published a now-classic

The efficiency of a coherent amplitude detector lies paper which showed that at very large values, the asymp-
somewhere between limits set by two extreme theories, totic output signal-to-noise ratio (SNR) of a ]imiter is
depending on the value of 8 = 2,/wt.T. In the discussion twice its input SNR. Because of this, it was supposed
we have considered (by assumption of the form p (_) that the same improvement ultimately should be evident
only) the effects of wide-band input noise. However, if in the performance of a phase-locked loop tracking the
there were other processes causing phase error, such as limiter output. In fact, the author (Ref, 2) used this result
loop voltage-controlled oscillator noise, detection insta- (erroneously, but subtly so) to derive a limiter perform-
bilities, etc,, they can be considered as an equivalent ance factor p. Recently, however, G. D. Forney (Ref. 3)
phase-error term to be included in p (_). has presented a simple argument to show that the asymp-

totic factor of 2 is not realized in loop performance,

As long as the loop SNR, p, is greater than 10, p (_) is although it is indeed present in output SNR. In this
very nearly gaussian, and a normal density can be sub- article, the author extends the asymptotic result to rede-
stituted for p (_), with the other instabilities reflected in rive the equivalent limiter performance factor,
the value of ,2.

References 2. LoopTheoryand Noise Components

1. Lindsey, W. C., Performanceof Phase-CoherentReceivers Pre- We shall assume (Fig, 22) that a loop has incident a
ceded b_t Bandpass Limiters, Technical Report 32-1162. Jet sinusoid in wide-band noise, and we shall express this
Propulsion Laboratory, Pasadena, Calif., Sept. 1967. process in the form (Ref. 4)

2. Golomb, S. W., et al., Digital Communtcatton_ With Sp_ce

Applications, pp. 120--131. Prentice-Hall, Inc., Englewood ^ fCliffs, N.J., 1964. F (t) = a 2_/_sin (_oot+ O) + n 0 (t) 9._/_sin (o,0t+ 0)
3. Viterbi, A,J., Principleso[CoherentCommunications,pp.86-96. ^

McGraw-HillBook Co., Inc., New York, 1066. -1"nt (t)2 _hcos (_0t q- 0) (1)

INPUT BAND-PASS _L MITER OUTPUT _ _ ,.i
I.IhfdTER I

,i,,=A ,,o ,", (o0t-0)T

+°/,,v_,,_(_.o,+o ) +.OV_,'n(_0t+_') I I----0---]• n¢(t)_[2cos (_JOt • 19) +hi "V2"sln (_Ot+ _') VC-'O OU-"G'_ l_

Fig. 22. The bandpaa_ limiter phase-locked loop
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where nx(t) and no (t) are independent wide-band in- It follows directly that the fundamental-zone limiter out-
phase and quadrature components [with respect to the put is of the form
voltage-contlolled oscillator (VCO) output] of the input

noise process, , is the rms signal amplitude, and _'is the 2:'/"Ll([A+_)(t)].)2_sin(,.,ut+O)loop estimate of the input phase process 0. The VCO y(t)-- _ A
output we shall take to be of the form

(,,citl_ }+ \ a (t)/ e',_cos(_,,t+ 0)v(0= K2'_cos(_ot+?/ (2/
2a/2L

- {[, + nl (t)] 2_,_sin (o,ot + 0)
so that the phase detector output is _r

+ .2(t)2',_cos(o,_t+ 0)} (7)
z(t)= <y(t)v(t)> =K[asin_+n,(t)] (3)

where L is the limiter clipping level, and A (t) is the/x

with 6 = O - O, the loop phase error. The terms enclosed process

in "< >" refer to the "low-pass part of" the expression. A (t) = [(A + n., (t))-" + n_.(t_i'_ (8)

The important point in Eq. (3) is that the only noise For convenience, we shall normalize L = 7r '2'v2 to give

having any effect on loop performance is the noise in nnity output power in the fundamental harmonic zone.
phase with the VCO. The resulting linear theoretical Previous calculations (Ref. 1 and SPS 37-44, Vol. IV,
phase error is then pp. 303-307) have shown that the mean signal level is

'4 S.,,,,(0)w_. _r= ._ (4) ,.2= ¥ p,,oxp(--p,,)[Xo(0,,/2)+ r_(0,,/9.)]_

0.7834pu + 0.4768p]_ (9)where S,t, I (j_) is the spectral density of the process nj (t)
and wL is the loop bandwidth (Ref. 2). _ 1 + 1.02400, + 0.47680_

in terms of the input SNR, pe = A2/N,,w,, the input
In previous analyses, it has always been assumed that process bandwidth to, and the modified Bessel functions

the input noise process has components of equal spectral of the first kind, I,, (x).
density, each equal to that of the input process. However,
the noise components at the limiter output do not have

The second term of Eq. (7) is noise whose variance is
equal spectra; this is the point that was overlooked in

extending Eq. (4) to the limiter-loop case. Hence, to eor- _ (n_ (t))

rect thehasresulttobePUblishedreevaluatee.inRef. 2, the value of S,,,,(O) _ = E _-_-_ (10)

) merely This expectation involves the evaluation of a somewhat .....f'/_
3. tlmlter Output Noise tedious, but straightforward, double integral. The result

is the simple expression
Let the input to an ideal bandpass limiter be

1

x it) = A 2_ sin (_ot + 0) + n, (A) 2_ sin (_ot + 8) ¢_ = _ [1 - exp (- 0,,)] ill)

+ no(t)_'_cos(,oot+ 0) (5)
The noise component n_ (t) appearing in Eq. (7) is uneor-

where A is the rms signal amplitude, and n, (t) and n¢(t) related with n_ (0; so its variance is
are independent, zero mean, quadrature gaussian noise
processes with respect to the input signal, having identical _ = 1 - a2 - _._ (12)
variances and spectra

4. LimiterNoise in-Phase With the VCO

Noc = No, = No I (6) The reader will note that the expressions for the loopinput y (t) given in Eqs. (1) and (7) are slightly different.
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When multiplied by the VCO output in Eq, (2), the as predicted by the Forney result, and
relevant loop noise nl it) is

1,16
n_it) = nl it) sin q, -t- n2it) cos 'h (13) r _-. < 1,16, p. very small (20)

] + 0,335 w_.
whose variance is then w.

ay= cr_-_-(_r_- a_) E (sin"-@) (14) The conclusion reached is that the effect of a limite,' o11
loop performance is less than 16% (0,66 dB) in effective

5. Phase-Locked Loop Variance input SNRI Under the assumption that w. > 10 w_., the

The variance in Eq, (4) can now be evaluated by noting dependence of _"on w/,/w, disappears for practical pur-
that, according to the definition of the in-ph,_c noise poses (within 0,1 dB), A rational function approximation
bandwidth wz, emulating the cross-over behavior of Eq. (18) near p = I),5

(Fig. 23), is

i [ �„�dw_
-- S,,,,,, (iw) = -- (15) 1 + p,, (21)

S,,ru (0) = wl J__ 27r w_ I" = 0.862 -b on
and therefore

a_--a_wL With th;s approximation, the linear-theoretical limiter
iv; "= performance follows d_rectly.

= A---7-\wzo,/ w,(l_.2) ] (16) 6. Nonlinear LoopTheory

The ratio wtpt/pnw, is the Springett factor (SPS 37-36, The only alteration that must he made to make the
Vol, IV, pp. 241-244), previously defined as l/r, which derivation of r general enough for the linear-spectral loop
relates output and input spectral densities, The only theory (Rcf. 2, Chapt, 9) is the estimation of E (sin =@)in
unknown in Eq. (16) is the ratio wt/w_, Asymptotically, Eq. (14) by a more accurate value. But the only change
as p. _ 0% all the. output noise comes from na it), so which would result in r would be a factor
w_ = wt/2 (the limiter output bandwidth wt differs by

a factor of 2 fi'om that of the baseband process); and as E [sin"¢,] _ (1 - exp (-2_rg)) /" 1 (2°)
P. _ 0, both noises n_ it) and nz it) have the same spectra, E [,I,'_] .... 2_r_
so again wl = wt/2.

Insertion of the value for _r]and the linear-theoretical (under the a:;sumptions of Ref. 2, Chapt. 9) inserted into

assumption sin" _ _ @"yield the second denominator term of Eq. (18), which we have
agreed, for w. > 10wt., is negligible anyway. Hence,

NowL the nonlinear theory is also essentially unaltered from the
cr_=_ r • (17) previously published results, except for the new I" that

must be used.

in which r is the true limiter performance faetor
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r= 1+ (_2toL'_(W,p,,_F.l_ _--exp(--p,)--17(w"_ June 1953.
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2. Tausworthe, R. C., Theoql and Practical Design of Phase-
(18) Locked Receioers, Technical Report 32-819. Jet Propulsion

Laboratory, Pasadena, Calif., February 15, lg06.

In limiting cases, I' behaves as follows: 3. Forney, C. D., Coding in Coherent Deep.Space Telemetry.
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XXI. Communications Elements Research
TELECOMMUNICATIONSDIVISION

A. System Studies for 90-GHz Space where T'_ is the antenna temperature with no intervening

Communications Systems: Atmospheric Effects atmosphere, ao is the zenith attenuation in decibels, _ is
the zenith angle, and T_ (_) is the sky temperature. Use of

on Millimeter Wave Propagation, T.Sato
the nodding subdish radiometer balances out the Ts (_)

The 60-in. radio telescope used for radio astronomy component. The expression for the received temperature
experiments (SPS 37-49, Vol. III, pp. 329--338) is being is then given by
converted into a radio sextant. An optical tracker auto-

Go

maticaUy tracks the sun in both hour angle and declina- log Ta (q_)= 10 see _ + logtion by generating -trot signals for the antenna servo. The

error-sensing elements attached to the telescope consist The absolute zenith attenuation can then be deter- _"
of two photoconducting cells per channel. When the sun //
is centered, both cells are illuminated equally and pro- mined from measurements of the received power and the /
duce equal resistances; no error signal is then produced, zenith angle without knowledge of the solar temperature

or antenna gain. Certain weather conditions may invali-If the sun's image shifts, the cells are illuminated un-
date the secant law giving an average value for the zenithequally, thereby producing an error signal. The error attenuation.

signal to the digital processor generates pulses that are
fed to the stepping motor in a direction to remove the

angular error in pointing. B. Spacecraft Antenna Research: RF Breakdown
Characteristics of S-Band Sterilizable

The 90-GHz nodding subdish radiometer mounted on
the a_in. radio telescope receives emissions from the sun. High-Impact Antennas, K. Woo

The slant path through the atmosphere changes with the The power-handling capabilities of the S-band steri-
position of the sun. The temperature of the antenna when lizable high-impact antennas (coaxial cavity, 1 cupped
pointed at the sun is given by

_SPS37.40, Vol. IV: discussion on pp. 201-206; photograph in
Ta (4') = _ 10"_n°'_°* ."-2', (if) Fig. 5, p. 202.
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ttt:n' die, 2 square cup,:' and circular cup _) have been in- i00..... _ .... _-- _- !
vestigated _i ver 7 low pressures. The antennas were each | i r

/
/ f=2298MHz I

down facility with dry _ir, 100_ carbon dioxide, and a _tR_q

mixture of 50_ carb,_.n dio'{ide and 50_;argon.
80

The ionization breakdown power level at 9,298 MHz of _ I [

each antenna was obtained as a function of pressure near _ z0----_l-- -
and at the point where the breakdown power is mini- o v

, mum, such as shown in Fig. 1 (obtained for the coaxial _+___ __.... __1°°°,°CAR8ONOIOXIOE

cavity radiator). The minimum ionization breakdown 60\|-- ] , j ---__ -_ _

power levels at 2298 MHz for all the antennas were found
within the pressure range of 1.5 to 2.5 torr. The multi- 50
pacting breakdown power levels at 9.298 MHz of all the 50o/oCAk_ON01OXIDE,50% ARGON

antennas were tested around 5 × 10-5 tort. The multi- 40 I I
pacting breakdown and minimum ionization breakdown 0 _ _ _ 4
power levels for all the antennas are summarized in .oRESSURE,to_

Table 1. Fig. 1. Ionization breakdown characteristicof
coaxial cavity radiator

Each value given in Table 1 represents the power that
each antenna actually received, i.e., the power fed into The power levels for _he square cup and circular cup ra-
the antenna minus the power reflected back due to rots- diators represent only momentary power; i.e., the power
match. The values to which "_" signs are attached repre- was shut off immediately after it was applied to those an-
sent the peak levels to whicb_ those antennas were tested tennas. When a steady power was applied, those antennas
due to power limitations imposed by either the output of experienced a thermal breakdown (hence, degradation of
the RF generator or the feeding hybrid _if used) or by electrical performance) at relatively low power levels.
other difficulties. The thermal breakdown was in the form of charring of the

foam in the vicinity of the feed probe due to the accumu-
lation of heat resulting from the poor thermal conduc-_sPs 37-42, Vol. IV: discussion on pp. 180, 181; photograph in

Fig. 1, p. 181• tivity of the foam. Figure 2 shows the charred area

_sPS 37-49 and -53, Vol. III: discussion on pp. 3,15--347(37-`19) around the feed of the square cup r_.diator after removal
and pp. 164-166 (37-53); photographs in Figs. 32, p. 3`16(37-49) of the foam. Test results at 2.0 torr showed that a square
and 5, p. 165 (37-53). cup radiator potted with Stafoam AA630 would sustain

'SPS 37-47, Vol. III: discussion on pp. 240-242; 1,hotograph in at least 3 h of continuous operation at the 50-W level, but
Fig. 4, p. 240 and Fig. 5, p. 241. would suffer thermal breakdown (voltage standlng-wave

Table 1. Ionization and multipacting breakdown power levels and locationsfor the
S-band sterilizable high-impact antennas_

Ionization breakdown Multipacting breakdown

Antenna Minimum hreokdown power, W, Breakdown powert W, for
for Indicated atmosphere Location of breakdown Indicated atmosphere Location of breakdown

A B ¢ A B C

Coaxial cavity 79 62 47 Around the probes _ 130 _ 130 _ 130 None observed

Cupped turnstile 31 23 17 At balun split _> 130 _ 130 _ 130 None observed

Square cupb _ 560 _ 560 _ 560 None observed _ 560 _> 560 _ 560 None observed

Circular cupt) _> 560 _> $60 _ 560 None observed _ 560 _ 560 _ 560 None observed

aAtmasphereA_d_ air.
AtmosphereBs 100% carbQndioxide.
Atmesl)hereC_ 50% carbondioxide, 500/, argon.

; bPottedwith StofoamAA630 or EccofoamPT.
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C. Radiation From a Horizontal Electric Dipole

Antenna Located in a Cylindrically

Stratified Plasma, R.Woo

1. Introduction

In SPS 37-47, Vol. III, pp. 247-257, the wake of a Mars
entry capsule was represented by a cylindrical plasma
column and the problem of a horizontal electric dipole
located in the wake was formulated. In SPS 37-50, Vol. III,

pp. 312-316, the representation of the wake was improved
by surrounding the plasma column with a plasma shell of

_.- different electron density than that of the column. Here
; the wake will be represented by a cylindrically strati-

fied plasma. The problem of a horizontal electric dipole

located in the wake will be formulated using a schemethat readily lends itself to computer calculation.

__.._" •i, ,, .....,,. " _'_"_:.. • 2. Integral Formulationof Fields for Horizontal Dipole

_ ": "'- The regions are numbered i, whcrei=l, 2,3,"" N+I,• " ' K •

.... ',_ ." '. "-' :., Region N + l is free space.

";i,':'2........:,_,s_" J....... Z.. ;.- =£.7- , The free-space region i = N + 1 is characterized by
._ _=,,, _ ,H_r _ ,, J, _. _ o permittivity e,, and permeability /z,,. According to the

magneto-ionic theory description for a homogeneous, iso-

! ! i ' _ tropic, and lossless plasma, the plasma region i is repre-
'' ! sented by a medium whose permittivity E_ is given by

(Ref. 1)

Fig. 2. Square cup radiator after thermal breakdown

e_= 1- _o (1)
ratio changed from 1,8 to 4,6) after 5 min of operation at

the 100-W level, The same antenna potted with Eccofoam where
PT would sustain at least 3 h of contirmous operation at

the 40-W level. _o_t n_ e_: -_ (2)
rllEo

On the basis of the test results, it can be seen that, for

high-power operation, the ionization breakdown is the with n_ representing the electron density, e the electron
problem area for the coaxial cavity and cupped turnstile charge, m the electron mass, and "_t,_the electron plasma //
antennas, and the thermal breakdown is the problem area frequency. The propagation constant of region i is then /
for the square cup and circular cup antennas. To improve given by
the power-handling capabilities of the existing antennas,
the following modifications are recommended: k'_= _2/J'°e_

Antenna Recommendation Assuming a time dependence of e jot, the respective
electric and magnetic field intensities, E and H, are related

Coaxial cavity Widen cavity and enclose feed to the electric 0t) and magnetic 0t*) Hertz potentials

probes with high-thermal- through the following equations:
conductivity dielectric 1

Cupped turnstile Redesign balun Ig = V × V X _ - ]o_t0V × _* (3)

Square cup _ Improve thermal conductivity
and reduce loss of potting H = V X V X _* + ],_eV X _t (4)

Circular cup f dielectric
where e is the intrinsie permittivity of the medium,
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The electric dipole of moment il is assumed to be

plasma region m (Fig. 3). The x component of 'n, _r will / / (p'_'z)
therefore represent the primary field and s"tisfy the fol- _ ._

lowing equation: _ .%-j-NI z
I

(V2+ k2,,,)_ = .Iz _(4- _o)_(z- Zo) _(p---po) Ii _,

where _ is the Dirae delta function and tile subscript m _.'_'_
refers to the region m. Since both E.- and H.- will be pres-
ent in the seeundary fields, the respective z components of

and _*, _._ and 7r_, will be used for region i and will _

satisfy the following wave equations: REGION No. 1 1< rn _<N i i + 1 . . _ /zI + 1
PERMITTIVITY ¢1 'Em ¢i ¢i + I CN eN + 1 = ¢0

(w+ =o (6) "0' "0 I'''1' 01"0I"
DIPOLE I I I J(w + _)_:: = 0 (7) , _OCA_EO_,, , ,

Integral representations for the Hertz potentials can be RADIUS ---P|(--TI-P._e0'*0' *0)pmP'-, '_ "+, 'N-, ,NEEtRsPACE
written using a Fourier integral in ti,e z direction and a

Fourier series in the $ direction (_ef. 2). For the primary Fig. 3. Geometry of the problem
field in region m,

wher8

I1 1 M = k_ - h2
_"_ i_e._8_1

The superscript i in the coefficients a,, b,,, c,,, and d, refersco

f_H(2) (_,,,,o)I, ()_,,,po)e-_''(_-_°)e -jh(z-'°) dh to the fields in region i. Since the fields are finite at×

,:-_ J-® " p = 0, c_,_) = d(," = 0. Also, since outgoing waves are in

(8) the free-space region i = N + -,1 -,,a(x+l')= bn(,v+_)= 0,

where The cylindrical components of E and H for region i can

3_,_= k_ _ h_ be obtained using Eqs. (3) and (4).

I, is the nth-order Bessel function of the first k_nd and E,_ = _ + k_ _r.._ (11)
H_,z) is the nth-order Hankel _unction of the second kind.

Equation (8) is for p > po; when o < oo, o and po must be ,
interchanged in the equation. For the secondary fields, the E¢, = 1 a2_r,_ 8rrz( (12)
following results apply for region i: _ 0_,8----_+ i,o_o8p

oo Ep, = O__r** 1(_/__._._2oa_r*j_£ (13)

_.,,=_-_foo[a_,,l,(x,p)+c_Olt_)(x,p) ] 0paz p _),/,zL.vL_

X e-_"¢ e -_'(*-*0)dh (9) H,_ = + k_ rr**_ (14) ._

l
He,, = I O_-*, /_e, 8_r,, (15)

,,, = E f:[b#, l.(x,o) + d_,,H_,,(,.,p)1 p o¢oz ao

X e-the e -th(*-'*)dh (10) Hp, = O_w*'-'-"_ti(_e,a_rzt_paz+ (lO)p O,l,
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The following are additional components in region m due , 37r..... 1 [_r.,,,'_
to the primary field: tI_,,, .... "I_,,_ 3p smq, I°,E,,,--/\34 / cos4

(20)

32_r_._cos _b 1 327r_.,
E:,,, - 3z _p p _z 3@ sin q, (17) 3gra';_,

H_,,_= ion,,,_ cos q_ (21)

(18) Ht,,_ = l'o_e,,,_ sin 6 (22)

(_ 3rr_,, 1 _r_,_ sin q_/_P_= 3q, p 3_o0/ The boundary conditions at p, require that the tangential

_(1 3rr.,,, 1 3arr.,,, + °" _*'_ cos, E and H fields be continuous. Imposing these boundary--_--- + p2 3@2 3z_ ] conditions at each boundalT p, yields the following results
(19) in matrix form:

oI P ;'l I D e"l [#-"l
0 =MI/"M_-''''MP, ' -M}a',M}_-*)...M}mm [B}.,']-'/,,_,,,/ M_y,[BO',-"l-*/"" /

o_.N+, " [_:"-'/
La,_,,'+,,J L_'."J L/_;;"-"J

2a)

where

M_ = _rB"_I-_Am._

M 1. (M O_) 0 X_.H (2_.(M Oi) 0

0 x; I. (x_P0 0 ,,._..r-r(_.(x_P0

Am = -n__._h1. (M p_) t_lZoM 1" (MoO -nh H_ (MoO i_/*0x_ H_._' (M o_)
pi pi

-i,_e_MI:,(MO0 -n----_hl.(X, oi) -I'_eiMH_'_'(MOO -nh s,,(Xioi)

pi Pt
B__ is similar to A_,_ except that M and e_ are replaced by M,_ and ei,_, respectively; and [B_°_]-_ = O.

7_.,) = II ihx,,,

_/,._ = I1 a.,

- X,,,e 1._-,(X,,,po)]H._, (X,,,_,,,)}
i I'(k_, + hge_"+'_ol..,(X,.oo) + ' ..m_o _,_

II h

#_"' = _-__oso4o,sot_ rw _"m_'°'.,,+. _tX.,co,_̂Hm,,,a(X,,,t,.) + W_""_'*I. -x(k.,#o)H2_(Z,,,p.,)]
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o,,_ _,,,_ o,,_and fl[,,a, respectively, by changing t'.The quantities 7,,°"-1_'"_,,_°"-n, %o,,-1}and ,-R°"-l_,,are obtained from -/,, , %, , %
to p.... and o,,, to p,,. Equality (23) consists of four equations and four unknown coefficients and can be readily solved.
The remaining coefficients are obtained through the following recursion relationship:

=M<i>l " I- . ,,

F:+./
Ld_2+./ Ld}/'J LflW_l Lfl2"-'_l

(9,4)

3. RadiationPatternsfor Horizontal Dipole

The radiation fields are obtained by using the method of saddle-point integration (Ref. 3) to evah, ate the integral
expressions of the fields in free space. The resulting spherical components of the rad,ation fields are

Eo = -2k =sin 0 elkz.... o__
R

x c,,p. (9,5)e-Jn¢+J (n+:t)7r/2
71=-_

(H'*
\1'o/

E_ = 2-_/x0ksin 0 eJkz°_°_°--R

X _ dt.'v+_>e-_"_+j°m_/_ (26)

,-,o=-
\fro/

where k is the free-space wave number, c_'v+_ and d__m References

are given in Eq. (23), and 1. Wait, J. R., Electromagnettcs and Plasmas. Holt, Rinehart and

Winston, New York, 1968.
_._ = k_ -- k 2 cos z0

h = k COS0 2. Wait, J. R., Electromagnetic Radiation from Cylindrical Struc-
tures. Pergamon Press, New York, 1959.

It should be noted that the corresponding modified Bessel a. Collin, R. E., Field Theory of Gutded Waves. McGraw-Hill
functions must be used when M < 0. Book Co., Inc., New York,1960.
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XXII. Spacecraft Telemetry and Command
TELECOMMUNICATIONS DIVISION

A. Approximate Analysis of Channel Imbalance Ref. 1, the central-limit theorem is invoked as an approxi-
Effects in Non-Coherent FSK Receivers mation for N : BT > 10; i.e., the statistics at the output

of the integrator approach gaussian for large values of N. 1With Large BT Products, C. Carl

1. Introduction The receiver model to be analyzed is showu in Fig. 2,
Binary non-coherent frequency-shift-keyed (FSK) sys- where B,, ai, and Ai are the channel 1,andwidthg, carrier

tems with large IF bandwidth-to-bit-rate ratios, or BT, attenuation, and channel attenuations, respectively; i.e.,
are being considered for applications where simplicity
and reliability of operation are worth the cost of decreased

efficiency compared with, for example, phase-shift-keyed /_ I Hi(_)J 2 df
(PSK) modulation techniques. Such an application is the Bi = _-_" _"
plan,_tary capsule-spacecraft relay link. The typical re- I H_,,ax 12 //
ceiver is shown in Fig. 1. Either frequency fl or ,f2is sent, /
corresponding to a data 1 or 0, square law detected, I ni(f_)[_

integrated over the bit interval T, and detected as a c(_ = I H i.... 12
data 1 or 0 (bit synchronization at the data detector is
assumed). For receiver design purposes, the effect on
performance must be determined when the two channels A "balancing amplifier" has been added to channel 2 to

(at fa and _) are unbalanced with respect to bandwidth, ascertain whether the imbalance may be minimized by
carrier attenuation, etc., so that the appropriate hard- adjustment of the gain. Let the integrator-detector be
ware tolerances may be specified. The effect of ac-coupling de-coupled for the present. The error probability will
the data detector must also be considered, be evaluated by calculating the conditional error prob-

abilities, given that a one (hypothesis Hx) or a zero (H_)

2. Analysis is sent, and averaging them with respect to H_.

The analysis involves a straightforward expansion of _Subsequentwork has shown this assumption to be pessimisUein
Glenn's (Ref. 1) work on the balanced receiver. As in performanceby a few tenths ofa decibel (to be published).
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Hs°uAREtBPFI LAW
fl DETECTOR

H=E1BPF2 LAW
f2 DETECTOR

Fig. 1. Typical non-coherent FSKrece;iver

.PF,H s°uAREaBI ATTENUATION+'1 LAWDETECTOR

S/N 0 ACCOUPLING J /'T J

- _--_-1Jo_°_=_

BPF2 ATTENUATION SQUARE _'_ G _"
• B2 A2 LAW

a2 DETECTOR ] L//"

(ST/N°)2
Fig.2. FSKreceiver model

Mareum (Re[. 2) has shown that the probability and the required moments are
density of a sum of N samples (i.e., integral) of the out-
put of a square 1_, detector, when the input is signal- t_+_ = N(1 + a)

plus-noise and noise only, is _7;+.= N(1 + 2a)

fuY-"_ } "+=_

m+,,(_)= _"g-ff)_-(,,+_",,I,_,[2(Nau)_], _= NO"11 •

g>0

where y is normalized to 2BNo and a = S/(NoB); S/No
1 PJV) = +r_-le-1)l'- is the signal-to-noise densityratio at the receiverinput.
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Removing the nennalization (since B is not the same for where
both channels) and assuming H = H. the moments at
the integrator output due to each channel separately,

2["
neglecting ._uesubtractor, are err (x) = _nT;jo e -t_dt

m = 2B_TN, A, 1 q N,,Bt.] After some algebra,

_ = 4B_TNXA'-', 1 + _,B,] P(elH1) =

- _ A N / _,Sr'q h"
,7_ = 4B_TA_NXG" 1 1-err 1 "

2 2 N_ A_N'_(_ twhere G is the amplifier gain, Combining the channels N _A_ + . A_ G= -F
through the subtractor, the probability of error, with the
gaussian assumption, is (la)

1{ [1 (m - _)2] ''} where N,=B,T. Similarly for H=H2, the probabilitye(e] Ha) = -_- 1 - err ,r_ -r _ of error may be evaluated to obtain

( I)1 1 [N_A,_G __-N_A, + N2A2G\ No /.] (lb)

P(e ]Hz)= -_- 1-err -_- N3,A_,+ N_A_ G'_ + G2A_Ng (._oT)

' ( l-22++ ._,,Since P(H_) = P(H2) = -_ the average probability of | N,R - N 2 RN. I-r:-. I I I
' _ ZL ...... ______o/,___A._

erroris P<e>=_ 2- err 2 2yWNr [ ST \ t
\Nolo,

1 e(elH,) + 1 1,(ellis) (2) _ ::

-°"=,,..,<_+>,:+=,,:(-Io),_1 ) /3. Choiceof Amplifier Gain 2

This amplification may be thought of as an operation (8)
that is compensating for some of the receiver imbalance
by improving the detector eflleiency (i.e., approaching a
maximum likelihood decision rule). One might speculate where (ST�No)2 is that ratio in channel 2 bandpass; i.e.,
on "optimum" values of G that minimize P(e), which in
general would be functions of ST�No and therefore be S['X_ a2 ST

difficult to mechanize in hardware. As a practical matter _k'-_'o]_ _ro
; then, G will be selected by some simple method to and

determine what improvements in performance (if any) that
_: may be achieved.

p= a..&
r Ct2

i First, for G = 1 (the unbalanced receiver), the prob- R = A..&

I ability of error from Eq. (2) becomes A_
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As the second ease, let G be chosen such that the from Eqs. (8-5) the balanced case
signal-only output from each channel are equal or

P" 1"1 = t_':1"2, N_."->0 P(e) = 1 - err \ N,,]_,

/0,Hence, 4 -_o ._,

( ( ct..'; '_ is obtained, which cheeks with Ref. 1.tqS _ _- 2B_TN,,A..G 1 -t- _._.NS]2B_,TN,,A1 1 + NoBI] .v....

As No--->0, 4. AC-Coupling

If the integrator is now ac-coupled, with tlm give.u
G = Bla_AI Nt gain settiligs established above, different performance is

B..,a..A, = _ RF- - - achieved. Ac-coupling removes tim mean (de) compo-

nent, which is (m,, + m,.,)/2, and the means become
Substituting this into Eq. (2),

I1.111 _- _£112 I,l,lll -- p, ll 2

+ l I
1 N_ ....... ,, .... /.-,aP(e) =-_-2-erf / \ p.,,,+/_,,_ _,,, _ _,,.

N1 + N_ P _ ,F 2F -_',, ... " 2 2).ST (m,_),,,.= m,° -

_I[N.,P-N,q-F{S_T_']2"}'_ The variances are unaffected. Making the necessary
- err "\N,, ]d_. 1_ changes in Eqs. (8-5), the probability of error, for C = 1

Jo , ( ST_ { (imbalance) becomes..aI 2

N1 + N,. F2 + \ N,, ]._,]

(4) 1{ f [ RN,F + N..,2 [ ST,_ .lV'Finally, let G be chosen such that the variance of the P(e) -= 2-err 2N_R..,+ .N]+ 2rR-'N_(_o)d
two conditional detection densities be equal; i.e.,

'q + ,'_1,,,= ,q + '41,,_. [ RN, n.. _ ST _ ,,,
1 ( P2"-FZ"_) _!'N'_-o):2 ] t

andS°Iving'G=(N'/N'_'RFV_'independent°fb°thST/N°' --eft L'2 N_R2 + N_ + 2N] (____To)j_ _

(7) /

= -- 1 ( ) _ST ForG=(N,/N,)RF(signalbalance),P(e) 2 err 2 N,+N_F+2P _oo

N, + N,r + \No/_ ]

[_ r'/Sry "I_I

(5) -e, ,/ L
Note that dependence on At in Eqs. (4) and (5) has been "-

removed. In addition, ff R = F = 1, and N_ = N2 = N, (8)
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For G -- (N,/N..)RI ''_ (wu'ianee balance), channel attenuations replaeed with

( 2 j N,.j, 1
1- err " "

N,-mN:I - oF _ ... where tilt' A' v'ere accounted for in a signal balance

(9) amplifier and the C, ad,ed lo ttsl performance after
1,ahmcing. For G - (I¢,,<A',)/(B:,t...A'.)and modifying

Some typical results are shown in Figs. :3 and 4. Be- Eq. (.1),
cause N - BT, N is expressed in decibels (10 log [ ]) to

be compatible with conventirmal noise bandwidth nota- P(e) --

tion; I" and I1 are also expressed in 10 log [] from. Given " V [ [ $7"_ _:-]w

P,,,,,,.,,(e)-:/,,,,,,.,,(ST/N,,) and l',,.,,(e) ----[,,,,,(ST�N,,) for _ L \ N,C, - N.C.I' } C,I'\

the unbalanced and 1)alanced (N --=N._.)receivers, respee- 1 / .9_- err -1 " -
N,, /.-,,I/

( - j
%

tively, degradation (in dB) is defined by 4 :5 N..C_I "_ f N,C[: 21'C_ _ :

ST __ ST [N:I C, - N,C, +Degradation _ N,, f,,', [P,,.,..,,(e)] _. .1

erf 2 N,C_ I-N,C'.',I "_ 2I':C._ _Decaying curves with ST/N. mean that P,,,,_,.,_(e)---) " " "

P,,.,(e) at high ST�N,,, etc. One may observe from these (10)
plots that a balance amplifier can measurably improve

performance in some cases, but not in others. Comparing is obtained for de-coupling; modifying Eq. (8),
Figs. :3a and 8b, it appears that if the ratio log (N,/N...)

is of opposite sign to log I:,, a "compensation" is cffected, P(e) =
improving the unbalanced receive/s performam.e.

Ac-eoupling appears to offer consistent improvement 1 2-err 1 !__-: _--)9_" _-_7,,)_ /
in performance. This is partieuhu'ly significant in a case T '_" N,C_ 4- N..C_P: :- .o.CW[ST'_ I
as shown in Fig. 5 where the usual P(e) is plotted (degra- - \ N,, ] =._]

substantially different). The reason for such catastrophic F .C, + C:. :p, [ST Y ',',
de performanc, is that the mean term implicit in P(e ] ti.,) - err .i :_ \ N,, ]_

in Eq. (8) has hecome positive and with a "decide-on- 2 N,C_ + N..C_P" + 2C_P a
zero" detector P(e ] H...)-o 0.5. However, it is less pos-
itive than the mean term in ere It/,) so that ac-coupling (11) /'7"-
provides usable performance. Balance amplifiers are not /,/
of much use in this case. Particularly alarming is that is obtained for ae-coupling. Figures 6 and 7 show the
this case could conceivably be built using crystal filters theoretical results compared with the experimental re-
with ___0.5-dB tolerance in insertion loss R, passband suits, ttere degradation is referenced to the case

ripple P, and noise bandwidth N_N..,. Clearly, care must C, = C.. = 1 (instead of the balanced receiver as above).

be taken when specifying filters for this application. The laboratory results correspond well with the theory, i
the differences are attributed to measurement tolerances.

i

5. ExperimentalWork_ References !
Using the FSK link described previously (SPS 37-51, 1. Glenn,A. B.,"Analysis of Non-CoherentFSK Systemswith Large

Vol. Ili, pp. 811--818), verification of the theory (signal Ratios of Frequency Unce,:taintiesto Information Rates," RCA
balance case) by varying the attenuation term R was at- Review, Vol. 27,pp. 279.-314,June 1966.

tempted. The link was as shown in Fig, 2 with the 9..Mareum, J. I., "A Statistical Theory of Target Detection by
Pulsed Radar," Rand ResearchMemo RM-754,reprinted in IRE

i *Experimentalresults used in this study were obtained by Transactionson Information Theorg, Vol. IT-0, pp. 161-164,
J. T. Sumida,JPL SpacecraftTelemetry and CommandSection. Apr. 1960.
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5 i i I
(a) r =-1 dB, N| = IldB, N2-10dB

AC/DC COUPLING

"_R= +1 clB, UC

+ I dB, AC

----____.__ _ -1 d8, AC

•"1dB, DC
z"
o o

I I I

(b) F_-IdB, N1_9dB, N2=I0dB

"_'_. R--IdB, DC

-I dB, AC

..... / _'_'_" ...+ I dB, DC /
/-

/ +ldB, AC

Fig. 3. Degradation of unbalanced recelver
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2.5 j I I I
(a) £'=-IdB, N 1 =lldB, N2 =L0dB S SIGNAL BALANCEv VARIANCEB_LANCEACJOCCOU_UNO

S'0_' I I I

1.5-- _

_ S,AC _.,.

VrAC
_O 0.5

1.0

O (b)["=- IdBo NI =9dB, N2 =10dB

' 10.8

0.4--s, Ac/oc.R.__-_ ---------"

0.2 V, AC
1 !2 13 14 15 16 17

Fig.4. Degradation of "corrected" receiver
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6

4 __

UNBALANCED_ DC

lO-]6 __

2

10-2 _

o  NC D. AC
10-364 _ '

UNBALANCED BALANCED,

CONDITIONS: N = 5007 dB)
10-4 -- [' =-1 dB --

-- N1 = 18dB --

6 -- N2 = 17dB --
4 -- R = dB --

AC/DC COUPLING /
2

10-5
13 14 15 16 17 18 19

Fig. 5. Comparison of balanced and unbalanced
receiverperformance
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9 I

8
CI = -3 dB

_DC DETECTOR

.... AC DETECTOR

7 N| = 14.63 dB

_'_B _ N2 = 14.84 dB

£ = 0,4 dB

[] c 2 = o dB

\
5 N. F1 .

"-.<
-..<

_ o

•_° _

...z. TS. ._---=0 .... _ ......'8:........ " "_ "I"--

I

Fig.6. Comparisonof theory and experiment for channel 1 imbalance
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- DC DETECTOR
..... AC DETECTORC, - -3 dB

\
• , N I = 14.63 dB

N2 = 14.84 dB

r = 0.4 dB

C, = 0 dBi

,J

---<
-2 dB

2 _-- _'_ _-

ol

I .,.-" ,,"_o -S dB

-I dB

-1
12 13 14 1S 16 17 18 19

(SVN0)2, dB

Fig. 7. Comparisonof iheory and experiment for che_nnei_ imbalance

i
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XXIII. Spacecraft Radio
TELECOMMUNICATIONSDIVISION

A. Low-Data-Rate Telemetry RF Systems were found to be necessary. These guidelines are as

Development, R. Postal follows:

1, Introduction (1) Use low noise transistors (2N918 or better).

A solid-state multiple frequency shift-keyed (MFSK) (2) Maximize isolation of transistor reactances from
2295-MHz transmitter has been developed as a subassem- frequency determining circuitry.

bly for a m-ary noncoherent telecommunication system (3) Use low leakage varactor in the control circuit.
capable of surviving a high impact on a planetary surface.
An overall description of the transmitter was given in (4) Minimize coupling to provide at least 20 dB isola-
SPS 37-52, Vol. III, pp. 249-250. Of prime importance is tion between the oscillator and the following stage.

the oscillator frequency stability necessary to achieve the (5) Use a low noise, third overtone crystal as a series /
desired communication system efficiency. Although deft- resonant element in the range of 20--32 MHz. J
nite stability requirements have not been established, it is
desired' to have a word separation of only 10 Hz at S-band (6) Set crystal drive level in the range of 50--300/_W.

with a word time of 5 s. In the future, a word time of (7) Minimize variations in crystal drive level.
greater than 20 s may be desired. Until definite require-
ments can be established, it is an objective of this task One oscillator configuration that reflects these guidelines

to determine the practical limitations of the stability of is a modified Colpitts circuit. A description of this circuit
crystal-controlled oscillators. The discussion in this article was included in SPS 37-40, Vol. III, pp, 198-201.
pertains to the MFSK oscillator portion of the S-band

transmitter. The additional requirement of high impact resistance

resulted in a contract with the Valpey-Fisher Corpora-
tion to develop a stable, ruggedized crystal assembly.

:: 2. Oscillator Development The necessary manufacturing processes, however, were
In attempting to provide a highly stable MFSK crystal- found to be very stringent and resulted in low yields at a

:i controlled oscillator, several oscillator design guidelines very high cost per unit. A recently available ruggedized
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TO-5 crystal assembly was also considered as a possible TO-5 units would meet the MFSK oscillator require-
candidate for the MFSK oscillator, Units manufactured ments, The development contract with Valpey-Fisher
by Monitor Products Company and McCoy Crystal Ineo_- has been terminated in view of the readily available,
porated are shown in Fig, 1, Both crystals used a third lower cost TO-5 units.
overtone 31.875 MHz AT cut resonator mounted on a

four-post TO-5 header, Preliminary tests indicate the
3. Test Results

Evaluation of the TO-5 erystal assemblies included

, _. _, ,,_ .... :, high impact tests and measurement of frequency versus

.... •-,,..'..al, . ' ,_;,:.'.,.".', .5 .'-_::_:, ' temperature, phase noise, and speetral purity. Samples
'"_'_":-;-'",-_J_";_:'lr • " .... ''"'"'; "-'-_'-'---,=_:'- of 12 units each from Monitor Products and McCoy Inc.,..:,._. .:_._* .. , ,..• , ......... - -_ -_;_.:'-,,,

__'_m_.-.-_. " "__'_: used for these tests, Shock tests were performed in
. .% weretb.ree planes at levels ranging from 2000-10,000 g. All

. _ "-" units survived 2000 g; however, five McCoy units failed
"- . f_. -- " " ._ at 5600 g and one Monitor unit failed during the last

l___:i I " -._ planeatXO,OOOg. Shoekeauseda&f/'frangingbetween'_ " 1 X 10-_ and 5 × 10-" per shock. It is believed the rugged-

ij._ .." .l[' * .'. , .i ; _ '_ ness of the Monitor unit is due tothe four-post direet"'.,. • resonator support as opposed to the McCoy ribbon
' ' *¢ , " " " support.

........ "<" , _" Phase noise and frequency versus temperature data of' L, _ , ._-_,;.r_, , .,, 2 "

Jl_, " " _ i . "£_ " _,e ,'_i_ :": : several TO-5 units are given in Table 1. Phase noise is
._ _o . _--'¢'",-_Z,'_t_': I , given as measured phase tracking error at S-band in a_ , _-'. - ._,/_1¢_ _ _ ,_. -
•, "., ",,,.,._ ,_-;'.'_.,",_.,:':',,,,'. *- a, phase-locked loop receiver with a noise bandwidth of
--_ -,. '- - _ ,.,-H_• _l _ -' 9.0Hz. Crystal temperature performance is listed as maxi-_ * - ... -_-- : ......... :.,-, ....

1_ti _'-_;:-_-.,__i _ mum slope of Af/f per °C as measured between 15 and40°C. Monitor sample 10 and McCoy sample 34 crystals
were then selected for spectral purity measurements.

":," The MFSK crystal-controlled oscillator module was
_' " :_ placed in an inoperative oven to minimize frequency drift

•_,v< due to temperature variations. To provide measurements
at S-band, the oscillator output frequency was multiplied
to 2295 MHz and then translated to 60 KHz for process-
ing in a computer-programmed speetrum analyzer. Spec-

tral analysis is accomplished by sampling the signal with
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an analog-to-digital converter. After N groups of 20T Since the McCoy sample 34 showed an improvement of
samples are collected (where T is equal to sample time 4 dB over the Monitor sample 10 for the T = 20-s ease,
and N is greater than 10013),each group is auto-correlated there was no interest in testing the McCoy unit at smaller
and Fourier transformed to find its spectral peak fre- sample times.
queney and value. The program then coP_putes the aver-

age value of the amplitude of each peak and computes a 4. Conclusions
loss factor in terms of spectral degradation from an ideal
oscillator. Spectral degradation data for the two crystals The MFSK oscillator will meet the sterilization and
are: high-impact requirements.

Average degradation, dB The stability performance indicates that crystal-
T,s controlled oscillators have the potential for achieving

Monitor 10 McCoy 84 good MFSK communication system efficiency for word
time to at least 9.0 s. The ultimate performance depends20 5.4 1.38
on how well the drift rate of such oscillators can be con-

10 2.3 -
trolled within the specific mission constraints. Informa-5 0,4 -
tion on this subject will be presented in future articles.

JPL SPACE PROGRAMS SUMMARY 37-54, VO£. III 223

|

i

1969010076-238



X×lV. Mariner Telecommunications
TELECOMMUNICATIONS DIVISION

A. Photon-ActuatedSolid-StateSwitch

Development, D. Bergens __l l r3
1

1. Introduction . i __1.The development of a photon-actuated solid-state ,

switch for signal transmission with electrical isolation was . D10_ i _ i )02

introduced in SPS 37-44, Vol. IV, pp. 320--325. The _ 4t __._..___) ._

switch's electrical and environmental requirements and _o
general configuration were given. Results were discussed Q3

for phase I, which consisted of the design, fabrication,
and testing of galllum-arsenide diode--phototranslstor = = --
corobinations, and the electrical design of the gate and
driver circuit. The results of phase II, in which the gate- Fig. 1. Photon-switch schematic diagram
driver was fabricated as an integrated circuit, and com-
plete switches were assembled and tested, are summarized D2 and the silicon phototransistor is Q3. The remainder

of the circuit is the gate and driver. The circuit is straight-
in this article. The photon-swltch development was per- forward and needs no explanation, except for R5, whichformed by Texas Instruments, Inc. (TI), under a NASA-
JPL subcontract, was added to provide a greater off-margin when the

switeh input is at 1 V, by shunting current around D2.

2. Driver The shunting effect of R5 is not serious at high currents
' when the driver is on because of the logarithmic char-

a. Deslgn. Figure 1 is the schematic diagram of the aeteristic of the diode. The supply voltage requirement
_. complete photon switch. The gallium-arsenide diode is was 4 ±1_ V.

224 JPL SPACE PROGRAMS SUMMARY 37-54, VOL. III

1111111 _1 '". .... ' _- ............................... ;IB- - "........................... I

i

1969010076-239



The gate-driver design was worst-case-designed with critical resistor, It3, is actually two resistors of different
parameters of integrated-circuit transistors and resistors, dimensions in parallel to provide a finer resolution adjust-
This required the establishment of margins on the semi- ment. Additional taps were also included for experimental
conductor processing (resistivity ranges, diffusion depths, reasons.
etc.). A transistor eonfigl.ration with which TI had pre-
vious experience and ,Jata was used for all transistors, b. Processing, Routine triple diffusion processing for
Its emitter-base junction was used for the input diodes, integrated circuits was used for the gate-driver circuit.
The base diffusion was used for all the resistors because Seven photographic masks were requi_ed-3 for diffusions
it has the lowest temperature coemeicnt, The resistivity and 4 for contact windows and meta]izations. A numher
range-of-routine base diffusion was wider than needed of evaluations was made during the processing of the
for the worst-case design. This problem was resolved in prototype runs. Transistor gains were measured. The
the resistor layout by tapping the resistors and providing resistors were probed on the slice before the final inter-
a choice of interconnect metalizations to pick up the connect metalization to establish the resistivity range and
appropriate taps. the choice between the two metalizations. The base resis-

tivity was within the expected range for the prototype
The layout of the gate-driver integrated circuit is runs.

shown in Fig. 2. This is also a composite drawing of the
mask for the integrated circuit. Several features of the 3. Photon-SwitchAssembly

layout require an explanation. Four of the standard tran- The complete photon switch consists of 7 parts: the
sistors were used in parallel for Q2, because its emitter gate-driver chip, phototransistor, GaAs diode, 2 ceramic
current can be as high as 44 mA and the optimum emitter

insulators, the 14-lead to TO-84 package, and the package
current of the standard transistor is only 10 mA. For future lid. Other materials used in _ssembling the switch are
expansion and yield considerations, 14 input diodes were
designed in and around the perimeter of the chip. The the SeSAs-glass, epoxy, gold-wire, and gold-solder pre.
resistors were tapped to provide the different lengths forms. The major assembly steps are shown in Fig. 3. The
needed to account for the resistivity range. A choice of assembly procedure is:
two metalizations was sufficient to match the expected (l) Solder the phototransistor and gate-driver chips to
resistivity range to the required resistor ratios, The most the ceramic insulators.

! ....
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F DR,VER sealing,. The. relative size of an unsealed switch is shown
in Fig. 5,

_,_ 4. TestsCERAMICS

a. Environmental. Sample lots of plmton switches were
1.MOUNTSIWAFERSONCERAMICS subjected to variahle frequency vibration, physical shock,

centrifuge, and temperature cycling to determine if there
were any problems that would preclude their use ;n space-
craft equipment, There were no failures.

I boonetwiprototype drivers were delivered to JPL at the end of
phase II. The electrical characteristics of these switches
are summarized in Table 1, The parameter I,, is a more
sensitive measure of the output than V .... because I,. is
taken at V,. = 0.6, which is at the edge of transistor satu-
ration, An explanation of the noise transmissibility param-2.MOUNtCE#,MmSINUEAO_RANDraNDrEADS
cter was given in SPS 37-44, Vol. IV. Table 1 shows that
all the switches met design s_.ecifications.

The primary requirement, however, is that the switches
meet these specifications after 10,000 h of operation. For

_ mOOE this reason, TI established guard bands on I_ and I,._oof5 mA and 10/xA, respectively, to allow for aging. These

_ _-----_--_ __ twoparametersaretheonesmostlikelytochangewith

time. A gradual decrease in I, is expected due to a very
slow degradation of photon output from the diode. This

degradation, which is tlmught to occur only when the
photon-emitting diode is on, determines the ultimate life
of the switch. Some drift in transistor I,,o with time is not

3. MOUNTGaA$DIODEANDBONDLEADS unusual, but it should not change more than 2-1 in goo,l

Fig.3. Major assemblystepsfor photon switch transistors over 10,000 h of operation. The guard band on
initia! parameters allows for these ehanges.

(2) Solder the eeramie subassemblies into the fiat pack- c. Life. Twenty-nine of tim 30 photon switches were ,/

age. placed on life test in a daisy chain configuration, with //

(3) Bond leads between pads on the phototransistor the output of one connected to the input of the next, ere.
and gate-driver chips, and the header pads. When power is applied, the configuration oscillates be-

cause there is an odd number of stages. Eaeh switeh is

(4) Bond leads to the unmounted CaAs diode, turned on and off at a 1.75-kHz rate. The duty cycle
is about 50_. The primary parameter of interest in life

(5) Mount the diode to the photon-sensitive region of testing is I_ because it is the most sensitive indieator of :
the phototransistor with the SeSAs glass, change. In 3,500 h of operation, the degradation of I_ has _

been minor.
(6) Bond the diode leads to the header and gate-driver

pads. Twelve of the phase I diode-phototransistor pairs were

(7) Cover the periphery of the diode with epoxy for operated with a constant diode current of 30 mA for
added .",upport at high temperature. 14,000 h to determine the aging rate. During this time,

the average decrease in I_ was 3 mA, and the maximum

: (8) Clean and hermetically seal the package, decrease was 7_.¢mA. In 7 of the 12 switches, the decrease

! 226 JPL SPACE PROGRAMS SUMMARY 37-$4, VOL. Ill

7

.......... Ill-" _--\ ___7-" L - ......................... _-_.. ...... _Z'L _.._£ 7_-IFL]'

1969010076-241



Fig.4. Completed photo-switch assembly before sealing

Fig. 5. Relative size of photon switch _"

!

JPL SPACE PROGRAMS SUMMARY 37.54, VOL. III 227 i
t

: j
.... ! ii ....... I ql ....

I

1969010076-242



Table 1. Electricalcharacteristicsof 30 photon-actuated isolation switches

tMeasured value Specifiedvalue
Parameter Test conditions_b

Min Av Max Mtn Max

Outputon-vollageV.... V L _ 10 mA, Vr_ _ 3.5 V, V,_ -- 3.0 V

Temperature:_- --20°C -- -- 0.115 -- 0.6
+25oC - -- 0.150 -- 0.6

+ 100°C -- -- 0.240 -- 0.6

Oulput on-currenlL, mA V_ 0.6 V, Vr, --: 3.5 V, V_, :- 3.0 V

Temperalure_ --20°C 28 43 57 10 --
+25°C 26 33 43 ',0

+ 100°C 15 19 26 10

Outpu,_ breakdown I, --: 100 #A 60 68 -- 35
voltage BV_.,.,,V

Oulput leakage V_, 1.0 V, V_, = 20 V, Vc, _ 4.5 V

current h,,, /_A nperalure --: "t-25°C -- 0.0013 0.0043 _ 0.1
+ 100°C _ 2.7 9.9 _ 20

IsolationcapacitanceC_,., pF ency _-- 1 kHz -- 2.C_ 2.5 -- 10

Input breakdown h, :-: 10 #A 7.2 8.0 -- 6.5
voltc.geBVI_,V

Inputoff-current I_,, mA Vl_ 0, Vc__ 4.5 V -- 0.19 0.21 -- 1

Input on-current,nA V_,_ : 6.0 V, V_c_ 4.5 V _ _.1 2.2 _ ._ X 10'

Powerdissipation-onPen,mW V,,, : 6.0 V, Vee_ 4.5 V

nperature _ --20°C 155 164 180 _ 200
_25°C 148 158 172 _ 200

-f-100°C 136 142 153 _ t 200

Powerdissipation.offPoll0 mW Vi,t : 0, Vc=_ 4.5 V

nperature :-: --20°C _ _ 0.97 -- I
"t"25°C _ 0.89 0.96 _ I 3--

_ _ 0.89 _ 1 /

Switchingtlme-on h, #s I_ "" 10 mA,Ve= = 4.5 V, ,,,'J/
,{oft) = 20 V 2,8 4,0 5,8 _ !0

Switchingtime-off t_,/Is I_ = 10 mA, Vce -": 4.5 V, 43 71 98 _ 100
,(oil)---- 20 V

Noise transmissibility(emitter Io = 2 mA,Vj,, "-"0 _ 1.8 2.0 _ 2
to collector)V,, V

_FreeolrtemperatwezJi-2$C'Cunless_eclfledotherwlse.
bVce_ IUDI_Iyvoltggl,Vln "-"JflpUtvoltage,Vee=" collecter.to-emlllervollage.

228 JPL SPACE PROGRAMS SUMMARY 37.54, VOL. Ill
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was 2, mA or" less. The lowest I,+of the 12 switches was TI for space flight qualification testing at JPL. When the
15 mA, t+fter 14,000 h. The rate of ehange of I, during qualification tests have been suecessfidly completed, the
the test was approximately linear with time. Eight other photon switch will be ready for use as interface circuits
diode-transistor pairs that were not operated during the in the comman:_., central computer and sequencer, and
14,000 h show no change in I,. The TI engineers believe other spacecraft subsystems. The), can also be used to
the aging "ate can be directly extrapolated upward in interface the ground support equipment with the space-
time for switch duty cycles less than 100g. For example, craft, thus eliminating many of the noise problems en-
if the duty cycle were 10%, it would take ten times as countered during checkout.
lonf* (or L. to decrease the same _.nount.

TI is marketing the phase I diode-transistor pair in a
t

The saturation voltage of the 19, switches inereased TO-5 can under the designation TIXL 103. It is called

an average of 11 inV. The vaaximum increase was _ inV. an optically coupled isolator.
Seven of the 19,inereazed less than 8 inV. These changes

are relatively minor. A patent application has been filed on the photon
switch by JPL. The innovation claimed is "a digital logic

One hundred photon switches have been ordered from gate whose output is electrically isolated trom the inputs."

//
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